Model transformation with a

3 dedicated imperative language

IRISA Rennes (France) - Triskell team

Jean-Marc Jézequel
Didier Voijtisek
Jean-Philippe Thibault
Frédéric Fondement

. IRISA @RISKE@




i Plan

= Model Driven Engineering
= Model transformation

= MTL concepts

= And soon...




iPIan

= Model Driven Engineering




i Model driven approaches

= « From contemplative to productive models»
Jean Bezivin

= Based on different models most of the time of
different meaning and level of abstraction.

= These models have to match / communicate /
be composed

= Model transformation is a key point !



EX: MDA from the OMG

= Successive refinements

Modeling — Endomorphic Transformations
point of views --=% Exomorphic Transformations

A > Outside UML scope

Proofs,

Formal Models Formal Models

QoS
Analysis, y o ~ %

Simulation|

Technical
Aspects

Business
Aspects

] 1 1 1
Text gecy

(e.g. XML)R equirements  Analysis Architectural Detailed Implementation Validation
Design Design



Class

M3 (MOF)
LIS
\
! tcinstignceDf:\-xuinstanceDfﬂ
.

winstanceOf» J
a4 []

/ ‘ “". \‘\

) \\

iThe OMG 4 layers architecture

/ 1
What we want == [l Lo Jege [
A / A
m / 4 / r
to tra nSfor winstanceOf»  j «injré'noe{]fn «instan}a’el}l‘» c<i|f15tanceDfn
/S / I'r
4 ]
a4 / .f
." Video " tf'f !
M1 (U del) L «snapshots .
R e String 2 ! iVideo
title = "2001: A Space Odyssey

\t{instancet}f»

aVideo

MO (Run-time instances)




i Plan
= Model transformation



iPatterns of transformation

Additional
Information

5 Another
PIM Model
Model
Merge
Platform
PIM L
Description

PIM

PSM

Transformation

. Mapping

Platform

Transformation

PSM

PSM

Patterns

Platform

PIM

language used

Platform
Independent
Metamodel

source language

Transformation
Specification

Transformation

PSM

target language

language used

Platform
Specific
Metamodel

MDA Guid

PSM

Transformation

Y
Platform
Specific
Types & Patterns

Etc. .

€

. OMG




Something interesting...

Model transformation is a program: just apply the best
programming practices !

= Design and analysis
= Models of transformations at different abstraction level

= [racability, versionning, testing...

= MDE: transformation of transformation !

= Such as XML with XSLT, a transformation may transform the
model of a transformation

= For instance to adapt a generic transformation (PIT) to a
specific tool (PST)...



Transformation tools:
i req U I re m e n tS (Bézivin Farcet Jézéquel Langlois Pollet)

= Depends only on metamodels
(not on models)

= Must be cascadable

= Can represent generic tasks, not
depending on the level of abstraction

= Must be adaptable to slightly different
problems

= Must be maintainable



iTransformation tools now...

= An upcoming standard: OMG MOF QVT
= Obviously, not yet implemented

= Many dedicated transformations

= Ccode generators, object to relational mappings, ...
= Much less dedicated tools

« Univers@lis, J, JMI implementations,...

= No generic solution (UML, real-time,...)

= Proprietary solutions



iPIan

= MTL concepts



Model Transformation
i Language (MTL)

= [he IRISA solution for model
manipulations

= A dedicated language for model
transformation (DSL ?)

= 10 be used as a motor when the OMG
MOF QVT will be realised



i MTL architecture

MTL CASE ] MTL Engine
ansior-

Transf
mation
model

Read Write Read only
models models

Dedicated CASEs







iPIan

= MTL concepts
= Respected requirements



Transformation tools:
i I"eq U I re m e n tS (Bézivin Farcet Jézéquel Langlois Pollet)

= Depends only on metamodels
(not on models)

=>
= Manipulates models

=« Of any kind of metamodel
= In any kind of repository



Transformation tools:
i req U I re m e n tS (Bézivin Farcet Jézéquel Langlois Pollet)

= Must be cascadable
=>
s Re-usable libraries of transformations

= Interoperability

= Can call other (transformation ?) tools
= Native libraries

= Can be called by other
(transformation ?) tools



Transformation tools:
i req U I re m e n tS (Bézivin Farcet Jézéquel Langlois Pollet)

= Can represent generic tasks, not depending
on the level of abstraction

= Must be adaptable to slightly different
problems

=>
= OO genericity (multiple inheritance)

= For classes
= For libraries

= Concept of view manipulation

= Views are virtual models whose metamodel is
described by a MTL Library



Transformation tools:
i req U I re m e n tS (Bézivin Farcet Jézéquel Langlois Pollet)

= Must be maintainable

=>

= Programming language with well-known
concepts

= Easy to learn
= EXisting maintenance solutions

= Independency from the model
repositories



iPIan

= MTL concepts

[
= Overview
[



From the programmer point of

iview (1/2)

= Typed language
« Static typing for MTL
=« Implicit typing for model elements

= Object-oriented language
= Based on the OMG UML class diagrams

= Packages

= Classes

= Associations (N-ary, class-associations, qualifiers...)
= Visibility

= Exception mechanism

= Methods (behaviours) in imperative style



From the programmer point of
view (2/2)

= Integrated model manipulation

= MTL object and model elements are manipulated the same
way

= No constraint on the humber of manipulated models

= An abstract language
= Based on MOF + OCL MM (+ QVT ?)
= Many compatible concrete syntax may be defined
= Full textual
= Structure in UML class diagrams + methods in text

= Structure in UML class diagrams + methods in an adapted
activity graphs

= Allows transformations of transformations
= Adapt a transformation to a specific platform




Adding known techniques and
ispecific innovating solution

MTL =

= OCL
= One of the best solution for model manipulation
= Standard library
= + Side effects
= Model modification
= MTL objects modification
= + Structuration
= UML class diagrams

sanbiuyoal
UMOU-[|OM « P|O »

= + MTL Libraries are “templated”
= Models to be manipulated — found at runtime
= Views as MTL “abstract” libraries — for generic manipulations

Ajd1y103ds
1L 94l




iPIan

= MTL concepts

= Models and views



i Model integration

= Everything is declared in a library which may be “templated” by
a number of models or views

= Libraries are “instanciated”

= Declared elements can access real models and real adaptors
(library subclass of the given view)

Property Package Classifier

Z} R d
paraneters |{redefines omdpsg:t[ﬂzjtes}ubmry
LibParameter % library i
Z} type A fextendedLibraries {redefines superClass}
1

ModelRef

ZF NativeLibrary
*

| |
RepositoryRef TypedModelRef




How to use views ?

i (motivation)

= Write transformations independent
from metamodels of the manipulated
models

1. Describe manipulated concepts (PI MM!)
in a library (as an example Class, Field...)

>. Write in an inheriting library (PS MMI)
how your concepts are mapped into the
real metamodels (UML 1.4, CWM RDB,...)

= This is the MDA pattern !




iAn example of view

Classe

type

-nom

af f vpe

Champ

+nom
+visibilité

Parametre

AN

1

Attribut

Operation

<<abtract>>
——————— M_M ; Privatize
manipulé Lib
ou vue
I
1
Privatize
+addGetter()
+addSetter()
+..()
| 5 v 1
== == Model 1.X
| Model 2.0 | _—
T MM UML1.X
MM UML2.0
adapter adapter
MM UML1.1 MM UML
adapter 1.3 adapter




Plan

= MTL concepts

= Repository access




Independency from repository
tools

= Model manipulation implies model repositories !
= Many of them are already available, with different
techniques and standards
= OMG MDA / JMI (Novosoft, CIM, MDR, EMF, Univers@ls,...)
=  UML CASE (Rose, Objecteering, UMLAUT, Poseidon,...)
=  Object-Oriented Databases / OQL (Poet, Jasmine,...)
= Relational databases (PostgreSQL, Oracle,...)
= Distributed systems (CORBA, EJB, .net,...)

= Many others in the future
= MTL must not depend on repository technology !



Yet another API...

= We have introduced a new API for model
manipulation
= IDL compatible
= The most basic concepts of the MOF
= No reflection

= Drivers” must adapt the tool to the API
= Already written: MDR

= DON'T MIND !

= MTL (motor / compiled programs ?) use this API

= No knowledge of this API required: everything is in the
language



i Capabilities

= Create, find or delete an instance of
= a class (found with its qualified name)
= an association (found either with its qualified
name or its association ends)
= Field access (found with its name)
« attributes, references, operation — if supported !
« attribute modification

= Optional parts (may be not supported — PST

= Platform Specific Transformation!):
qualified links, reflection, dedicated methods...



An example

:Main Host

0
rh

:MTL Transformation

Madel 5

—Hh

::CORBA Client Driver

\

-HH

::CORBA Client Manager

- ::MDR Driver

5

/d :MDR
[
::MDR Driver
g::UMLAUT Driver *E UMLAUT
[ [
:UMLAUT Driver *g = UMLAUT

:Server

0

5 ::CORBA Daemon

g ::Oracle Driver

/ \

g ::CORBA Server Driver :

g ::Oracle




iThe meta-level

= Information from MTL

]
MetaClass

o
o
Element API
tAPI
&¢ 0 getMetaClass()
A getMetaAssociation()
o getMetaAssociationWithAssociationEnds()
MetaElement getMetaFeature()
‘MetaAttribute()
iN get
getName() getMetaOperation()
% v\ getMetaAssociationEnd()
getRole()
O startup()
MetaAssociation MetaFeature shutdown()
getScope()
| |
© O O

MetaAssociationEnd

getType()

MetaAttribute MetaOperation




iThe model-level

= Information from the repository driver

o o <
MetaClass API MetaAssociation

getQualifiedName() getRole() getQualifiedName()

getMetaObject() associateModelElements()
alllnstances() o dissociateModelElements()

alllnstances WithConstraint() Element

instanciate() %
‘ \

ModelElement ModelRole

AttributeDiscriminant : string getMetaAssociationEnd()
AssociationDiscriminant : string getModelElement()

OperationDiscriminant : string
getFeatureValue()
isMetaObject()

delete()

isTypeOf()

isKindOf()

setAttributeValue()

invokeQueryOperation()
getUniqld()




iPIan

= MTL concepts

= And soon...



i BasicMTL

= Offers main characteristics of MTL
=  Strongly typed for himself, layzy typed for models

= Object oriented (libraries, classes, attributes and
operations, multi inheritance for classes and libraries)

= Model manipulation (repository access)

= Action language independent from the platform

= Predefined types and operations inspired from OCL
= Views — Adapter mechanism

= Exceptions

= Platform independent (from standards and real
platforms)

= Independence is adaptability (to the future...)



i BasicMTL and MTL

= BasicMTL will be available soon
= [t offers less possibilities than MTL

= By transformation (in BasicMTL), it can
become MTL

= BasicMTL is used as a “bootstrap” for MTL

= It will permit testing main MTL concepts !



i Conclusion

= We propose to see a transformation
language as a classical language
= Ease of learning
= Apply well known methodologies

= Still have to implement it !

= BasicMTL quite soon (validation of concepts)
= Adaptation to the QVT standard later



	Model transformation with a dedicated imperative language
	Plan
	Plan
	Model driven approaches
	EX: MDA from the OMG
	The OMG 4 layers architecture
	Plan
	Patterns of transformation
	Something interesting…
	Transformation tools: requirements (Bézivin Farcet  Jézéquel  Langlois Pollet)
	Transformation tools now…
	Plan
	Model Transformation Language (MTL)
	MTL architecture
	MTL Position
	Plan
	Transformation tools: requirements (Bézivin Farcet  Jézéquel  Langlois Pollet)
	Transformation tools: requirements (Bézivin Farcet  Jézéquel  Langlois Pollet)
	Transformation tools: requirements (Bézivin Farcet  Jézéquel  Langlois Pollet)
	Transformation tools: requirements (Bézivin Farcet  Jézéquel  Langlois Pollet)
	Plan
	From the programmer point of view (1/2)
	From the programmer point of view (2/2)
	Adding known techniques and specific innovating solution
	Plan
	Model integration
	How to use views ? (motivation)
	An example of view
	Plan
	Independency from repository tools
	Yet another API…
	Capabilities
	An example
	The meta-level
	The model-level
	Plan
	BasicMTL
	BasicMTL and MTL
	Conclusion

