
Model transformation with a
dedicated imperative language

IRISA Rennes (France) - Triskell team
Jean-Marc Jézéquel

Didier Vojtisek
Jean-Philippe Thibault
Frédéric Fondement

Plan

Model Driven Engineering
Model transformation
MTL concepts
And soon…

Plan

Model Driven Engineering
Model transformation
MTL concepts
And soon…

Model driven approaches
« From contemplative to productive models»
Jean Bézivin
Based on different models most of the time of
different meaning and level of abstraction.
These models have to match / communicate /
be composed

Model transformation is a key point !

EX: MDA from the OMG

Requirements Analysis Architectural
Design

Detailed
Design

Implementation Validation

Lifecycle

Modeling
point of views

Proofs,
QoS

Analysis,
Simulation

Technical
Aspects

Business
Aspects

Text
(e.g. XML)

PIM

Doc Doc Doc Doc Doc Doc

PIM PIM PSM

PIM PSM

Code Tests

Formal Models Formal Models

Endomorphic Transformations
Exomorphic Transformations
Outside UML scope

Successive refinements

The OMG 4 layers architecture

What we want
to transform

Plan

Model Driven Engineering
Model transformation
MTL concepts
And soon…

Patterns of transformation

Platform
Description

Etc. …
MDA Guide, OMG

Something interesting…
Model transformation is a program: just apply the best

programming practices !
Design and analysis

Models of transformations at different abstraction level
Tracability, versionning, testing…

MDE: transformation of transformation !
Such as XML with XSLT, a transformation may transform the
model of a transformation
For instance to adapt a generic transformation (PIT) to a
specific tool (PST)…

Transformation tools:
requirements (Bézivin Farcet Jézéquel Langlois Pollet)

Depends only on metamodels
(not on models)
Must be cascadable
Can represent generic tasks, not
depending on the level of abstraction
Must be adaptable to slightly different
problems
Must be maintainable

Transformation tools now…
An upcoming standard: OMG MOF QVT

Obviously, not yet implemented

Many dedicated transformations
code generators, object to relational mappings, …

Much less dedicated tools
Univers@lis, J, JMI implementations,…
No generic solution (UML, real-time,…)
Proprietary solutions

Plan
Model Driven Engineering
Model transformation
MTL concepts

Respected requirements
Overview
Models and views
Repository access

And soon…

Model Transformation
Language (MTL)

The IRISA solution for model
manipulations

A dedicated language for model
transformation (DSL ?)

To be used as a motor when the OMG
MOF QVT will be realised

MTL architecture

Read Write
models

Transfor-
mation
model

Read only
models

MTL CASE MTL Engine

Dedicated CASEs

MTL Position

MTL motor

Repositories

Transformation

In OMG-QVT
Libraries

Framework

Transformation

In MTL

Interpreter/Compilator
OMG-QVT 2 MTL

In MTL

Plan
Model Driven Engineering
Model transformation
MTL concepts

Respected requirements
Overview
Models and views
Repository access

And soon…

Transformation tools:
requirements (Bézivin Farcet Jézéquel Langlois Pollet)

Depends only on metamodels
(not on models)

=>
Manipulates models

Of any kind of metamodel
In any kind of repository

Transformation tools:
requirements (Bézivin Farcet Jézéquel Langlois Pollet)

Must be cascadable
=>

Re-usable libraries of transformations
Interoperability

Can call other (transformation ?) tools
Native libraries

Can be called by other
(transformation ?) tools

Transformation tools:
requirements (Bézivin Farcet Jézéquel Langlois Pollet)

Can represent generic tasks, not depending
on the level of abstraction
Must be adaptable to slightly different
problems

=>
OO genericity (multiple inheritance)

For classes
For libraries

Concept of view manipulation
Views are virtual models whose metamodel is
described by a MTL Library

Transformation tools:
requirements (Bézivin Farcet Jézéquel Langlois Pollet)

Must be maintainable
=>

Programming language with well-known
concepts

Easy to learn
Existing maintenance solutions

Independency from the model
repositories

Plan
Model Driven Engineering
Model transformation
MTL concepts

Respected requirements
Overview
Models and views
Repository access

And soon…

From the programmer point of
view (1/2)

Typed language
Static typing for MTL
Implicit typing for model elements

Object-oriented language
Based on the OMG UML class diagrams

Packages
Classes
Associations (N-ary, class-associations, qualifiers…)
Visibility
Exception mechanism
…

Methods (behaviours) in imperative style

From the programmer point of
view (2/2)

Integrated model manipulation
MTL object and model elements are manipulated the same
way
No constraint on the number of manipulated models

An abstract language
Based on MOF + OCL MM (+ QVT ?)
Many compatible concrete syntax may be defined

Full textual
Structure in UML class diagrams + methods in text
Structure in UML class diagrams + methods in an adapted
activity graphs

Allows transformations of transformations
Adapt a transformation to a specific platform

Adding known techniques and
specific innovating solution

«
O

ld
» w

ell-know
n

techniques
The M

TL
specificity

MTL =
OCL

One of the best solution for model manipulation
Standard library

+ Side effects
Model modification
MTL objects modification

+ Structuration
UML class diagrams

+ MTL Libraries are “templated”
Models to be manipulated – found at runtime
Views as MTL “abstract” libraries – for generic manipulations

Plan
Model Driven Engineering
Model transformation
MTL concepts

Respected requirements
Overview
Models and views
Repository access

And soon…

Model integration
Everything is declared in a library which may be “templated” by
a number of models or views

Libraries are “instanciated”
Declared elements can access real models and real adaptors
(library subclass of the given view)

ModelRef

Library

NativeLibrary

RepositoryRef TypedModelRef

LibParameter

Package ClassifierProperty

/extendedLibraries {redefines superClass}

*

*library
parameters {redefines ownedAttributes}1

*

type

*

1

How to use views ?
(motivation)

Write transformations independent
from metamodels of the manipulated
models

1. Describe manipulated concepts (PI MM!)
in a library (as an example Class, Field…)

2. Write in an inheriting library (PS MM!)
how your concepts are mapped into the
real metamodels (UML 1.4, CWM RDB,…)
This is the MDA pattern !

An example of view

<<abtract>>
MM

manipulé
ou vue

MM UML
1.3 adapter

MM UML1.1
adapter

MM UML1.X
adapter

Model 1.X

MM UML2.0
adapter

Model 2.0

Privatize
Lib

-nom
Classe

+nom
+visibilité

Champ

Attribut Operation

Parametre

type

type

+addGetter()
+addSetter()
+...()

Privatize

1*

Plan
Model Driven Engineering
Model transformation
MTL concepts

Respected requirements
Overview
Models and views
Repository access

And soon…

Independency from repository
tools

Model manipulation implies model repositories !
Many of them are already available, with different
techniques and standards

OMG MDA / JMI (Novosoft, CIM, MDR, EMF, Univers@lis,…)

UML CASE (Rose, Objecteering, UMLAUT, Poseidon,…)

Object-Oriented Databases / OQL (Poet, Jasmine,…)

Relational databases (PostgreSQL, Oracle,…)

Distributed systems (CORBA, EJB, .net,…)

…

Many others in the future

MTL must not depend on repository technology !

Yet another API…
We have introduced a new API for model
manipulation

IDL compatible
The most basic concepts of the MOF

No reflection
“Drivers” must adapt the tool to the API

Already written: MDR

DON’T MIND !
MTL (motor / compiled programs ?) use this API
No knowledge of this API required: everything is in the
language

Capabilities
Create, find or delete an instance of

a class (found with its qualified name)
an association (found either with its qualified
name or its association ends)

Field access (found with its name)
attributes, references, operation – if supported !
attribute modification

Optional parts (may be not supported – PST
= Platform Specific Transformation!):
qualified links, reflection, dedicated methods…

An example
:Main Host

::MTL Transformation
::MDR Driver

::MDR Driver

::MDR

::UMLAUT Driver ::UMLAUT

::UMLAUT Driver ::UMLAUT

::CORBA Client Driver

::CORBA Client Manager

Model 4

Model 3Model 5

Model 2

Model 1

:Server

::CORBA Daemon

::CORBA Server Driver

::Oracle Driver

::Oracle

::MDR Driver

::MDR Driver

::UMLAUT Driver

::UMLAUT Driver

::Oracle Driver

::Oracle

::MTL Transformation

::CORBA Client Driver

::CORBA Client Manager

Model 2

Model 1

Model 5

Model 4

Model 3

::MDR

::UMLAUT

::UMLAUT

::CORBA Daemon

::CORBA Server Driver

The meta-level
Information from MTL

MetaFeature

getScope()

MetaAttribute MetaOperationMetaAssociationEnd

getType()

getScope()

Element

getAPI()

MetaElement

getName()

MetaClass MetaAssociation

getName()

getAPI()
API

getMetaClass()
getMetaAssociation()
getMetaAssociationWithAssociationEnds()
getMetaFeature()
getMetaAttribute()
getMetaOperation()
getMetaAssociationEnd()
getRole()
startup()
shutdown()

getMetaClass()
getMetaAssociation()
getMetaAssociationWithAssociationEnds()
getMetaFeature()
getMetaAttribute()
getMetaOperation()
getMetaAssociationEnd()
getRole()
startup()
shutdown()

getType()

The model-level
Information from the repository driver

MetaAssociation

getQualifiedName()
associateModelElements()
dissociateModelElements()

ModelElement

isMetaObject()
getFeatureValue()

AttributeDiscriminant : string
AssociationDiscriminant : string
OperationDiscriminant : string

delete()
isTypeOf()
isKindOf()
setAttributeValue()
invokeQueryOperation()
getUniqId()

ModelRole

getMetaAssociationEnd()
getModelElement()
getMetaAssociationEnd()
getModelElement()

isMetaObject()

getQualifiedName()
associateModelElements()
dissociateModelElements()

MetaClass

getQualifiedName()
getMetaObject()
allInstances()
allInstancesWithConstraint()
instanciate() Element

API

getRole()

getFeatureValue()

AttributeDiscriminant : string
AssociationDiscriminant : string
OperationDiscriminant : string

getQualifiedName()
getMetaObject()
allInstances()
allInstancesWithConstraint()
instanciate()

getRole()

delete()
isTypeOf()
isKindOf()
setAttributeValue()
invokeQueryOperation()
getUniqId()

Plan
Model Driven Engineering
Model transformation
MTL concepts

Respected requirements
Overview
Models and views
Repository access

And soon…

BasicMTL
Offers main characteristics of MTL

Strongly typed for himself, layzy typed for models
Object oriented (libraries, classes, attributes and
operations, multi inheritance for classes and libraries)
Model manipulation (repository access)
Action language independent from the platform
Predefined types and operations inspired from OCL
Views – Adapter mechanism
Exceptions

Platform independent (from standards and real
platforms)

Independence is adaptability (to the future…)

BasicMTL and MTL
BasicMTL will be available soon
It offers less possibilities than MTL
By transformation (in BasicMTL), it can
become MTL

BasicMTL is used as a “bootstrap” for MTL

It will permit testing main MTL concepts !

Conclusion
We propose to see a transformation
language as a classical language

Ease of learning
Apply well known methodologies

Still have to implement it !
BasicMTL quite soon (validation of concepts)
Adaptation to the QVT standard later

	Model transformation with a dedicated imperative language
	Plan
	Plan
	Model driven approaches
	EX: MDA from the OMG
	The OMG 4 layers architecture
	Plan
	Patterns of transformation
	Something interesting…
	Transformation tools: requirements (Bézivin Farcet Jézéquel Langlois Pollet)
	Transformation tools now…
	Plan
	Model Transformation Language (MTL)
	MTL architecture
	MTL Position
	Plan
	Transformation tools: requirements (Bézivin Farcet Jézéquel Langlois Pollet)
	Transformation tools: requirements (Bézivin Farcet Jézéquel Langlois Pollet)
	Transformation tools: requirements (Bézivin Farcet Jézéquel Langlois Pollet)
	Transformation tools: requirements (Bézivin Farcet Jézéquel Langlois Pollet)
	Plan
	From the programmer point of view (1/2)
	From the programmer point of view (2/2)
	Adding known techniques and specific innovating solution
	Plan
	Model integration
	How to use views ? (motivation)
	An example of view
	Plan
	Independency from repository tools
	Yet another API…
	Capabilities
	An example
	The meta-level
	The model-level
	Plan
	BasicMTL
	BasicMTL and MTL
	Conclusion

