
P. Stevens et al. (Eds.): UML 2003, LNCS 2863, pp. 220–233, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Platform Independent Web Application Modeling

Pierre-Alain Muller1, Philippe Studer 1, and Jean Bézivin2

1
 ESSAIMUniversité de Haute-Alsace

12 rue des Frères Lumière
68093 Mulhouse Cedex, France

{pa.muller,ph.studer}@uha.fr
2
 ATLAS Group, INRIA & IRIN

Université de Nantes
2, rue de la Houssinière, BP 92208

44322 Nantes cedex 3, France
jean.bezivin@irin.univ-nantes.fr

Abstract. This paper discusses platform independent web application modeling
in the context of model-driven engineering. A specific metamodel (and associ-
ated notation), companion of the UML metamodel, is introduced and motivated
for the modeling of dynamic web specific concerns. Web applications are rep-
resented in three independent aspects (business, hypertext and presentation). A
kind of action language (based on OCL and Java) is used throughout these as-
pects to write methods and actions, specify constraints and express conditions.
The concepts described in the paper have been implemented in a tool and op-
erational model-driven web information systems have been successfully de-
ployed.

Keywords: model-driven engineering, MDA, web, metamodel, PIM.

1 Introduction

At the end of the year 2000, the OMG proposed a radical move from object composi-
tion to model transformation [1], and started to promote MDA (Model Driven Archi-
tecture) a model-driven engineering framework to manipulate both PIMs (Platform
Independent Models) and PSMs (Platform Specific Models). The OMG also defined a
four level meta-modeling architecture, and UML was elected to play a key role in this
architecture, being both a general purpose modeling language, and (for its core part) a
language to define metamodels. As MDA will become mainstream, more and more
specific metamodels will have to be defined, to address domain specific modeling
requirements. Examples of such metamodels are CWM (Common Warehouse Meta-
model) and SPEM (Software Process Engineering Metamodel). It is likely that MDA
will be applied to a wide range of different domains.

We found interesting to apply the MDA vision to web engineering; a field where
traditional software engineering has not been very successful, mostly because of the
gap between software design concepts and the low-level web implementation
model [2].

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Nein PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

Platform Independent Web Application Modeling 221

We believe that model engineering gives the opportunity to reinject good software
engineering pactices into web application developments. Models, together with as-
pects, favor the collaborative work while preserving different stakeholder’s points of
view. Graphic designers should be able to continue to create static presentation arti-
facts, and the software engineers should use models to explain how these static arti-
facts (or part of them named fragments) get combined and augmented with dynamic
business information coming from the business model and hypertext logic coming
from the hypertext model

The work described in this paper has been done in the context of the development
of Netsilon [3] a visual model-driven environment dedicated to web application de-
velopment. We will present a metamodel specific to dynamic web page composition
and navigation. This metamodel has to be used as a companion metamodel of UML in
order to build PIMs for web information systems. A graphic notation, based on di-
rected graphs, will also be presented.

2 Web Applications

A web application is an information system which supports user-interaction through
web based interfaces. Typical web applications feature data persistence, transaction
support and dynamic web page composition.

A web application is split into a client side part, which is running in a web
browser, and a server side part, which is running on a web server. The client side is
responsible for page rendering while the server side is responsible for business proc-
ess execution and web page construction. The process of page construction varies
widely in dynamicity, ranging from completely static, in the case of predefined
HTML pages, to totally dynamically constructed pages, when the HTML pages are
the result of some computation on the server.

A web interaction can be decomposed into three steps:
• Request. The user sends a request to the web server, usually via a web page already

visualized in a web browser. Requests can be sent to the server either as forms or
as links.

• Processing. The Web server receives the request, and performs various actions so
as to elaborate a web page, which contains the results of the request. This web page
is then transferred to the web browser from where the request originated.

• Answer. The browser renders the results of the request, either in place or in another
browser window.
A web page may be composed of several kinds of graphic information, both tex-

tual and multimedia. These graphic components are mostly produced with specialized
authoring tools, using direct manipulation and wysiwig editors.

When it comes to visualize a web page in a web browser, these various compo-
nents have to be glued together by HTML formatted text, which is either embedding
some of the page content (for instance the text) or referencing the files that contains
the data (for instance the images). This process may involve translations as well, for
instance to translate XML code into HTML.

In the case of dynamic web pages, the final HTML formatted text is not stored on
the server, but is generated at runtime, by programs either compiled (like Java) or

222 P.-A. Muller, P. Studer, and J. Bézivin

interpreted (like PHP). These programs integrate into web pages the graphic elements
and the information coming from many kinds of data sources (like databases, files,
sessions or context variables…). To increase performances, pages may be cached, so
that dynamic pages do not have to be generated when their sources have not been
modified.

Building web applications requires several different qualifications. Typical worker
roles include:

• Marketing to define the target audience and the content to be delivered.
• Graphic designers to define the visual appearance (including page layout, fonts,

colors, images and movies).
• HTML integrators to develop HTML pages and fragments to web enable the visual

appearance.
• Programmers to write programs (in Java, PHP or other script languages) which will

generate the dynamic pages, by combining HTML fragments and information
coming from databases and current context.

• Content writers to feed the application with value added information.

Page layout and graphic appearance is an area where a lot of creativity comes into
play. Graphic designers use imaging and drawing tools to generate images (as well as
animation and movies) stored in binary files. Graphic designers often collaborate with
HTML integrators, who know how to write efficient HTML code. HTML integrators
implement the graphic charter into web pages; this involves compressing and splitting
the images, mapping the fonts to style sheets, establishing links, making buttons,
writing Javascript for rollovers and writing HTML text to embed all these various
components. Occasionally, they also have to integrate the data produced by the con-
tent writers. They use web authoring tools, automatic or semi-automatic HTML gen-
erators, which store their production into files, either as textual notation (HTML) or as
some binary data (GIF, JPEG, FLASH…). Current tools mainly export HTML (and
not XML), and the separation between page content and page layout is poor.

As long as these teams used to produce static web sites, they had no real technical
problems. Things changed as they started to develop more and more dynamic sites
with the help of programmers. Web applications are far more demanding; they are
real software systems, and they require following a software development process.
This was kind of a cultural chock; a lot of web agencies were unable to overcome the
challenge. Nowadays, web applications are mostly built by software houses, they
have gained in dynamicity, but they do not really progress in graphic creativity, be-
cause it is difficult to write the programs that would animate sophisticated graphic
charters. It is also difficult to define an optimal development process; communication
and coordination between all these different roles is often a challenge [4].

We believe that model engineering and MDA, is an excellent opportunity to rec-
oncile graphic designers with programmers, and to increase the overall productivity.
The challenge is to define the right modeling concepts; to find how to introduce the
power of model transformation in a world (the art of graphic design) traditionally
hostile to any kind of rule enforcement.

Platform Independent Web Application Modeling 223

3 Modeling Web Applications – Related Work

Before going further, let’s take four definitions.
• By presentation we refer to the visual elements that compose a web page. These

elements contain textual, graphic and multimedia elements (images, animations,
movies…).

• By navigation we refer to the network of paths within the application, in other
words all the possible scenarios of pages a user can browse through.

• By composition we refer to the process of constructing a web page by combining
several fragments together.

• By business model we refer to the description of the business classes and their
relations.
Several different approaches are undertaken in the modeling community to model

web applications:
Schattkowsky and Lohmann [5] are defining an approach for small- to medium-

size applications; they plan to generate page and code skeletons. They stay close to
the current state of UML tools, like Rational Rose, which generate partial code. We
take a more radical position; we want to be able to build PIMs from which totally
executable applications can be generated.

Conallen [6] focuses on notation and has defined a UML profile; the main advan-
tage of this approach is that UML modeling tools may be reused to model the web;
the drawback is that Conallen mainly represents implementation, and is therefore
suitable for PSMs rather than PIMs.

Fig. 1. Multi-aspects modeling of web applications.

The WebML [7] people emphasize conceptual modeling and have defined four
modelling aspects, the structural model (data content, entities and relation), the hy-
pertext model (composition and navigation), the presentation model (layout and
graphic appearance of page) and the personalization model (individual content based
on users and groups).

At a first glance our work may seam close to WebML as we have retained three
aspects, the business model, the hypertext model (composition and navigation) and

224 P.-A. Muller, P. Studer, and J. Bézivin

the presentation model (see fig. 1). Aspect modeling justifies itself in the context of
web modeling, because web applications are complex systems involving several dif-
ferent stakeholders (marketing, graphic-designers, developers, content writers…).
Therefore it is very convenient to separate models into several aspects, and to be able
to focus on each aspect independently of the other. However there are major differ-
ences with WebML; we have a complete object model, including operations and
methods, our hypertext model is decorated with conditions and constraints written in a
model-aware action language, and the presentation model has been designed so that
existing web authoring tools can be integrated seamlessly, without changing the work
habits of graphic designers and HTML integrators.

3.1 Metamodel or Profile

We found that it is not obvious to choose between making a new metamodel or pro-
filing an existing one.

A metamodel defines a specific domain language. It may be compared to the for-
mal grammar of a programming language. The MOF (Meta Object Facility) can be
used to specify metamodels; this involves defining classes, attributes, relations and
constraints.

A lighter alternative to making new metamodels, is to customize existing ones.
Therefore, MDA provides facilities (known as profiles) to extend or constrain existing
metamodels (by terms of stereotypes and tags). Interestingly, some metamodels may
also be defined as UML profiles, as it is the case for SPEM.

We took the position that creating a new metamodel and associated notation
would make more sense when the semantic distance between existing UML modeling
elements and newly defined modeling elements is becoming too large.

The Conallen extensions describe subtypes of coarse-grained web implementation
artifacts and profiling UML classes or components is fine for that. In our case, we
have defined new modeling concepts, which have little in common with classes, ob-
jects or states. There is no obvious inheritance between our modeling elements and
UML modeling elements. Desfray [8], who has been very active about profiles, ex-
plains that defining a new metamodel instead of a profile is justified when the domain
in well defined and has a unique well-accepted main set of concepts; this is precisely
the case for web-based user interfaces. We also had a practical reason to define a
metamodel; as explained by Atkinson, Kuehne and Henderson-Sellers [9], meta-
modeling in terms of stereotypes lacks transitivity in the derivation of properties, and
inheritance-based approach was important in the design of our tool. A last reason that
pushed toward a metamodel (and associated notation) was the fact that we could not
reuse existing UML tools anyway, because their user interfaces were not aware of the
specific behavior that we wanted to give to our modeling elements (most notably by
using position in graphics to convey ordering information).

Therefore, considering the context of our work, we estimated that profiling UML
was not adapted and that it was justified to define a new metamodel to be used in
conjunction with UML.

Platform Independent Web Application Modeling 225

3.2 The Business Model Aspect

The first aspect, the business model, goes well beyond WebML’s entity-based struc-
tural model. We use UML class diagrams to represent the business classes, their at-
tributes and operations, and, in addition to WebML, we are using a kind of action
language (named Xion) to describe the behavior of the methods. In the context of
UML, S. Mellor has enumerated the requirements [10] for such an action language.
Xion follows a large part of these requirements, excepted for the points related to
separation of data access and computation, state charts and signals. The syntax of
Xion is based on the syntax of OCL augmented with Java-like control structures and
affectation. Therefore, to the contrary to OCL which is a side effect free language,
Xion can be used to create, update and delete instances at runtime; it has direct sup-
port for association navigation, role exploration and collection manipulation. We are
currently generating either Java or PHP (and the embedded SQL statements) from the
same Xion statements; in this respect, Xion is truly part of PIMs.

Besides business description, we also use this aspect to describe pervasive web
services, like session management, personalization, search or statistics. When re-
quired, packages may be used to partition the business model, and separate the vari-
ous concerns.

3.3 The Hypertext Model Aspect

The second aspect, the hypertext model, is an abstract description of composition and
navigation between document elements and fragments of document elements. In the
context of web modeling this model describes how web pages are built and linked. In
a wider context, it can also be used to handle multi-channels distribution, mixing
electronic and paper documents, as we have experienced in earlier work about docu-
ment modeling [11].

Composition describes the way the various web pages are composed from other
pages (fragments) as well as the inclusion of information coming from the business
model or current context (like sessions). Again, Xion is used as a query language to
extract information from the business model and as a constraint language to express
the various rules, which govern page composition.

Navigation details the links between the web pages. Navigation includes the speci-
fication of the parameters that will be transferred from page to page, as well as the
ability to specify actions to be applied when triggering a link. The Xion language
allows the specification of the actions to be performed when transitioning from one
page to another and the declaration of predicates that lead to the selection of a par-
ticular path between pages according to the current context and the business model.

The hypertext model makes it possible for a tool to check the coherence and the
correctness of the navigation at model compilation time. This removes all the troubles
related to parameter passing and implementation language boundary crossing (mix of
interpreted languages, un-interpreted strings, parameter passing conventions…).

226 P.-A. Muller, P. Studer, and J. Bézivin

3.4 The Presentation Model Aspect

The third aspect, the presentation model, contains the details of the graphic appear-
ance of web applications.

The goal of the presentation model is to make it possible for graphic designer and
HTML integrators to keep their work habits; to be able to produce static HTML pages
and fragments by using conventional tools. It does not make sense to create another
way of specifying the graphical appearance of web pages. Therefore, we have not
provided explicit support to model the graphical appearance of the user interface,
because we consider that wysiwig authoring tools are already available, and perform a
good job to cover this aspect. We believe that existing tools must be integrated, with-
out change, in the process of dynamic web page development, but that their produc-
tion must be able to be controlled by an implicit presentation model.

In this vision, a dynamic web application is composed of fragments, which can be
developed as static HTML, supplemented with some special placeholders, easily
identifiable by graphic designers and HTML integrators. Whenever some dynamic
information must be inserted into a web page, the graphic designers simply designate
the spot in the file where this information must be inserted (see fig 2).

Fig. 2. At runtime, the placeholder is replaced by the component text.

The consequence is that we have shifted the focus of modeling to the parts that are
out of the scope of these web authoring tools, and that require typically to program
complex behavior, using conventional programming languages like Java or PHP.

4 Modeling Elements for Web Page Composition and Navigation

We start by defining an abstract metaclass WebElement derived from ModelEle-
ment. Web elements are intended to capture web design elements at any kind of
granularity (specifically with much finer grain than URLs), so that individual links
and fragments of text or layout can be taken into account.

Web elements are specialized in WebFiles (which contain or reference presen-
tation artefacts) and Zones. DecisionCenters explain how web files relate to-
gether.

Platform Independent Web Application Modeling 227

4.1 Webfiles and Zones

Web files are statically associated to real files on disk (which contain data suitable for
rendering in web browsers). Web files may be considered as fragments, in which case
they are necessarily included in some enclosing web file (potentially also a fragment)
until a non-fragment web file is reached. At the time of transformation of PIMs into
executable PSMs, such top-level non-fragment web files become entry points in the
web application. They are translated into target language, and are executed on the
server (they can be referred to by an URL).

Zones further specialize web files to better promote separation of concerns be-
tween graphic designers and programmers. They have no statically associated files;
their content is generated or retrieved at runtime, they make it possible to describe
web pages at a purely conceptual level, establishing a very clean separation between
logic and presentation. Using zones, software engineers can model a web user inter-
face without entering in the presentation details, while graphic designers can focus on
appearance, using conventional tools as if they would be doing static web sites.

A zone is an abstract representation of some chunk of information, which makes
sense in a given context. A zone is not aware of the type of content it refers to. Zones
are not limited to web development; they can be used to represent any kind of content.
In the specific case of web pages, a zone refers to some characters stream, which can
be understood by a web browser; the simplest example of zone content would be
some HTML formatted text. As this paper focuses on web development, we will often
refer to HTML text in the following lines, although there is no limitation to HTML
for zones.

4.2 Decision Centers

Decision centers represent variation points in the web user interface. Each of these
centers is responsible for a decision to be taken at runtime, while the user is interact-
ing with the system. Decision centers support an entry action, which has access to
session variables and may define local variables.

We have identified six kinds of decision centers to cover the complete range of
variation points in web user interfaces (see fig 3).

Fig. 3. Simplified excerpt of the metamodel. Web files are related by decision centers.

228 P.-A. Muller, P. Studer, and J. Bézivin

We give below the definition and graphic representation of these six kinds of deci-
sion centers.

Icon Name Description
Composer Composers compose fragments into pages. A composer selects a

target fragment to be inserted in place of the placeholder
Value dis-
player

Value Displayers display single values. A value displayer evaluates
an expression, converts the result in a character string and inserts this
string in place of the placeholder in the generated text.

Collection
displayer

Collection displayers display collections of values. A collection dis-
player acts as a composer applied iteratively to all the items in the
collection. For each element a specific target fragment may be cho-
sen.

Linker Linkers link webfiles to other non-fragment webfiles. Linkers aug-
ment the navigation power of static HTML links, because they can
point to various targets, and change the state of the system when
activated.

Form Forms link webfiles to other non-fragment webfiles. Forms handle the
HTML forms. All input elements that can appear in a form are con-
sidered as local variables in the context of the form and are initialized
with the value posted during the submission of the form.

System
variable
displayer

System variable displayers display platform specific system environ-
ment variables, like HTTP server name, server root path, or target
language extension.

Composers, Collection Displayers, Linkers and Forms require a least one target web
file. Potential targets are ordered in a sequence, and each target is guarded by a Boo-
lean condition. At runtime, when the web page is generated, the decision center
evaluates the conditions in the order of the sequence, and the first expression that
resolves to True determines the choice of the target web file. In case there is no such
True condition, the decision center selects no web file and an empty string replaces
the placeholder. It is possible to specify a default decision, which will be chosen if no
other was taken.

5 Graphic Notation

We have rendered the composition and navigation model under the shape of a di-
rected graph whose principal nodes are web files. The edges are either composition
relations between pages and fragments (or between fragments themselves) or hyper-
text links between pages. In fact, on a finer level of granularity, the composition rela-
tions or hypertext links are themselves nodes of the graph and are modeled by deci-
sion centers. An example of hypertext model for composition and navigation is given
in figure 4.

Platform Independent Web Application Modeling 229

Fig. 4. : Example of hypertext model for composition and navigation. Nodes are web files;
edges are decision centers. The graph is implicitly directed; it grows from the left to the right,
and from the top to the bottom.

While on a static picture this kind of graph may seem somehow similar to a class
diagram, it is important to note that the behavior of the user interface is fundamentally
different from a class diagram editor. Differences have to do with ordering of the
modeling elements (evaluation based on relative vertical position), elided cycle repre-
sentation, representation of conditions and several other minor details.

As hypertext graphs can be huge, we have defined visualization principles, which
focus on one web element at a time. The view is split in three swim lanes; the left
most contains the current web file, the middle one shows all the decision centers
which belong to the current web file, and the right most one the several targets for the
current decision center. The graph is directed from the left to the right. Thus in the
case of a composition, the left most element is likely to contain one or more elements
of the right-hand side and in the case of navigation, the left most element is the hy-
pertext link holder, while an element of the right-hand side represents a potential
target web file (see fig 5).

5.1 Detailed Metamodel for Web Page Composition and Navigation

Figure 6 presents an overview of our metamodel for web page composition and navi-
gation. The central element is WebFile, which describes a document element (or a
fragment). A web file can be treated as a static or a dynamic element: if static, it is
simply copied unmodified during deployment; if dynamic, it is generated as server
side code and participates in the dynamic part of the web application. HTML tag
filtering and striping makes it possible to use web-authoring tools for the design of
fragments as easily as for the design of entire pages.

Zone

Collection
Displayer

Linker

Value
Displayer

WebFile

Fragment

230 P.-A. Muller, P. Studer, and J. Bézivin

Fig. 5. Example of split view of the hypertext model.

ModelElement

name : Name
visibility : VisibilityKind
isSpecification : Boolean

(from Core)

WebElement

filterSelect : Short
forTestPurpose : Boolean

SourceFilter

regularExpression : String
substitution : String 10..* 1

+sourceFilter

0..*

Zone

sourceType : String
url : String
expression : String
elementPathExpression : String

WebVariable

kind : Short
defaultValue : String
isComposition : Boolean
isHidden : Boolean
isCacheCriteria : Boolean

Classifier
(from Core)

* 1*

+type

1

WebContext

0..1 0..*0..1 0..*

DecisionCenter

entryAction : String
id : String

0..1

0..*

0..1

+webVariable

0..*

DecisionConstraint

expression : String
initializationExpression : HashMap

1 0..*

+decisionCenter

1

+constraint

0..*

DisplayMethod

initializationExpression : HashMap

(from Core)

WebFile

isFragment : Boolean
path : String
filterToTag : String
isEntry : Boolean
treatment : Short
interfacing : Short
isHTML : Boolean
isExtended : Boolean
entryAction : String

0..1

1

0..1

1

0..* 0..*0..*

+decisionCenter

0..*

0..*

1

0..*

+webFile1

0..*1 0..*1

PolymorphicZone
Method

body : ProcedureExpression

(from Core)

Operation

concurrency : CallConcurrencyKind
isRoot : Boolean
isLeaf : Boolean
isAbstract : Boolean

(from Core)

0..* 0..10..*

+operation

0..1

0..*1

+method

0..*

+specification

1

Fig. 6. Excerpt of the hypertext metamodel for web page composition and navigation.

Current
Webfile

Current
decision center

Platform Independent Web Application Modeling 231

A web file can be specialized as a Zone whose associated content is obtained dy-
namically by the evaluation of an expression that returns the URL of the content or
the content itself.

A web file can also be specialized as a PolymorphicZone. A polymorphic
zone is the mean to introduce the object notion of polymorphism in the composition
model. In fact, a polymorphic zone is associated to an Operation that is in charge
of producing the content. Since the operation can be implemented by overridden
methods, the content can be generated according to the real class of an instance. To
reinforce the separation between the business model and the hypertext model, we
introduce a subclass of Method named DisplayMethod that is associated to a
web file. The production of content by an Operation implemented by one or more
display methods is thus realized by webfiles.

Each web file has a context WebContext that describes its entry parameters. A
parameter is described by WebVariable and has a type, which is an instance of
Classifier.

DecisionCenter define variation points in the hypertext model. A decision
center has an entryAction, a unique id to identify its placeholder, local variables
(WebVariable) and an ordered sequence of DecisionConstraint. A decision
constraint defines a guard whose evaluation to true leads to the selection of its associ-
ated web file.

ModelElement

name : Name
visibility : VisibilityKind
isSpecification : Boolean

(from Core)

JavaDeploymentSite

packagingType : Short

JSPDeploymentSite ServletDeploymentSite

PHPDeploymentSite

Site

sessionTimeout : String
sessionStorage : String
sessionTimeoutURLExpression : String

DeploymentSite

targetLanguage : String
domainQualifiedServerName : String
pathOnServer : String
targetLanguageExtension : String0..1 *

+site

0..1

+deploymentSite

*

0..1
1+site

0..1

+currentDeploymentSite 1

Database
jdbcServer : String
generationServer : String
generationUser : String
generationPassword : String
database : String
schema : String
RDBMSname : String
deploymentDriverName : String
deploymentServer : String
deploymentUser : String
deploymentPassword : String
prefix : String

0..1 0..*

+site

0..1

+database

0..*

Fig. 7. Excerpt of the metamodel for transformation from PIMs to web PSMs.

5.2 Transformation of PIMs into PSMs

The transformation of the PIMs into executable PSMs has been coded in Java. Several
different deployment sites can be defined for the same project. A deployment site
specifies a target environment and a persistence system (see fig 7). Information de-
scribing the current deployment site is taken into account at code generation time,
when the PIMs are translated into executable PSMs. The encapsulation provided by
the decision centers (SystemVariableDisplayer, Linker, Form) allows the design of
effective PIM for the hypertext model. The business model in the PIM is transformed

232 P.-A. Muller, P. Studer, and J. Bézivin

as a set of classes in the target language and a database schema. The hypertext model
is transformed as a set of static documents, classes or scripts in the target language.
Finally, the action language is translated in the target language.

A deployment site specifies a target environment (web application server, lan-
guage, site information). Our code generator currently targets any combination of
(PHP, J2EE) applications server with (Oracle, MySQL, PostgreSQL) databases. Our
tool is able to transparently create and incrementally update the target database ac-
cording to the modifications applied to the PIM.

6 Conclusion and Future Work

We have applied model-driven engineering in the field of web engineering. We be-
lieve that the MDA initiative is a good opportunity to raise the level of abstraction,
and increase the productivity in the development process of web applications, pro-
vided that the overall process does not change the working habits of graphic designers
and HTML integrators. Model developments remain the duty of software developers.

We have favored the development of a specific metamodel dedicated to web applica-
tion development (instead of a profile) to better cope with specialized behavior and
tool user-interface. This metamodel has to be used in conjunction with UML and
promotes concerns’ separation between graphic development and software develop-
ment.

Our experience shows that web user interfaces can be modeled using a small and
well-defined set of modeling elements (3 types of web files and 6 types of decision
centers). An obvious question about this work has to do with completeness of the
metamodel; do we have identified enough concepts to model any kind of web appli-
cations? In fact, we have followed a very iterative approach, and the metamodel has
been validated by the development of about a dozen of significant totally model
driven web applications (for online examples visit http://www.domaine.fr,
http://www.namestep.fr/, http://www.solinest.fr/, http://www.mydocmail.net,
http://www.prh-france.fr). We have achieved complete model engineering; we can
generate various executable PSMs from the same PIMs.
Another question is about level of abstraction; what about the granularity of our web
modeling concepts? We have been looking for a balance between expressiveness and
design freedom, and so our modeling elements should be considered as relatively fine
grained. The next step would be to develop either patterns or wizards, providing
shortcuts, and here we could probably reuse work done in the WebML effort. This
also includes adding support for state charts, especially in the area of session man-
agement (as many web applications have to maintain state information for every ses-
sions).

It would also be interesting to re-align our action language with the on-going stan-
dardization efforts led by the OMG; this involves better understanding the interactions
between OCL, the action semantics and QVT [12]. Another major point would be to
make the PIM to PSM transformations explicit, and therefore allow customization of
the code generation phase.

Platform Independent Web Application Modeling 233

References

1. J. Bézivin, “ From Object Composition to Model Transformation with the MDA” , in
proceedings of TOOLS’2001. IEEE Press Tools#39, pp. 350–354 . (August 2001).

2. H.-W. Gellersen, M. Gaedke, “ Object-Oriented Web Application Development” , IEEE
Internet Computing, pp.60–68, Januray-February 1999.

3. W. El Kaim, O. Burgard, P.-A. Muller, MDA Compliant Product Line Methodology, Tech-
nology and Tool for Automatic Generation and Deployment of Web Information Systems,
Journées du Génie Logiciel, Paris, December 2001.

4. A. McDonald, R. Welland, “ Web Engineering in Practice” . Proceedings of the fourth
WWW10 Workshop on Web Engineering, 21–30, May 2001.

5. T. Schattkowsky, M. Lohmann, “ Rapid Development of Modular Dynamic Web Sites
Using UML” , UML 2002 Conference, LNCS 2460, pp. 336–350, 2002.

6. J. Conallen, “ Building Web applications with UML” . The Addison-Wesley Object Tech-
nology Series, 2000.

7. S. Ceri, P. Fraternali, A. Bongio, “ Web Modeling Language (WebML): a modeling lan-
guage for designing Web sites” , Ninth International World Wide Web Conference, May
2000.

8. P. Desfray, “ UML Profiles versus Metamodeling Extensions… an Ongoing Debate” , Uml
In The .Com Enterprise: Modeling CORBA, Components, XML/XMI And Metadata
Workshop, 6–9 Novembre 2000, Palm Springs.

9. C. Atkinson, T. Kuehne, B. Henderson-Sellers, “ To Meta or not To Meta – That is the
Question“ , Journal of Object-Oriented Programming, 13(8): 32–35, 2000.

10. S. Mellor, S. Tockey, R. Arthaud, P. Leblanc, “ An Action Language for UML: Proposal for
a Precise Execution Semantics” , UML 98, LNCS 1618, pp. 307–318, 1998.

11. 5. M.-C. Roch, P.-A. Muller, B. Thirion, “ Improved flexibility of a document production
line through object-oriented remodeling” , Second congress IMACS, Computational Engi-
neering in Systems Applications, Hammamet, CESA’98, Vabeul-Hammamet, Tunisie,
Vol III, pp 152–159, April 98.

12. OMG, MOF 2.0 Query/Views/Transformations RFP), OMG document ad/02-04-10, April
2002.

	1 Introduction
	2 Web Applications
	3 Modeling Web Applications – Related Work
	3.1 Metamodel or Profile
	3.2 The Business Model Aspect
	3.3 The Hypertext Model Aspect
	3.4 The Presentation Model Aspect

	4 Modeling Elements for Web Page Composition and Navigation
	4.1 Webfiles and Zones
	4.2 Decision Centers

	5 Graphic Notation
	5.1 Detailed Metamodel for Web Page Composition and Navigation
	5.2 Transformation of PIMs into PSMs

	6 Conclusion and Future Work

