
Towards an MDA-Oriented UML Profile for Distribution

Raul Silaghi, Frédéric Fondement, Alfred Strohmeier
Software Engineering Laboratory

Swiss Federal Institute of Technology in Lausanne
CH-1015 Lausanne EPFL, Switzerland

{Raul.Silaghi, Frederic.Fondement, Alfred.Strohmeier}@epfl.ch

Abstract

The era of distributed systems is upon us. Middleware-
specific concerns, and especially the distribution concern,
which is the core of any middleware-mediated application,
are addressed every day in all sorts of enterprise systems.
However, object-oriented UML designs offer a very limited
perspective on what exactly is distributed, how exactly the
distribution is achieved, and where exactly distributed ser-
vices are located. In order to answer these questions, the
MDA-compliant Enterprise Fondue method proposes a hi-
erarchy of UML profiles as a means for addressing the dis-
tribution concern at three different MDA-levels of abstrac-
tion. Model transformations are provided to incrementally
refine existing design models according to the proposed
profiles. For the last phase of the Enterprise Fondue pro-
cess, code generation for specific middleware infrastruc-
tures is supported through the Parallax framework. The
CORBA technology is used for illustrating the entire ap-
proach on a concrete example.

1. Introduction

With the rapid growth of the Internet and the associated
web services revolution, distributed systems become more
and more pervasive setting up new standards for modern in-
dustries. Current enterprise applications consist of hetero-
geneous components written in different programming lan-
guages and distributed in heterogeneous environments that
comprise different hardware platforms, operating systems,
data bases, and network protocols. The only way of mask-
ing these differences within an enterprise, or between enter-
prises, is by relying on middleware infrastructures, which
can integrate diverse software components and allow them
to interoperate effectively.

Model Driven Architecture (MDA) [1][2], an Object
Management Group (OMG) [3] initiative, raises the inte-
gration and interoperability barrier at higher levels of ab-
straction, moving it from a mainly syntactic interface level

(realized through agreed upon IDL [4] interfaces, for in-
stance) to a more expressive behavioral level (realized
through agreed upon models), promoting models to the sta-
tus of first-class citizens. A key characteristic of MDA is the
separation of concerns between two modeling dimensions:
one focusing on the business functionality (resulting in
Platform Independent Models – PIMs), and another one fo-
cusing on the implementation of that functionality on a spe-
cific middleware platform, such as COM/DCOM/COM+
[5], RMI [6], CCM/CORBA [7][4], Jini [8], EJB/J2EE
[9][10], .NET [11], Web Services [12], or other message-
oriented middleware platforms (resulting in Platform Spe-
cific Models – PSMs). While model transformations should
be used to move between PIMs and PSMs, code generators
are supposed to map PSMs to concrete middleware-based
implementations. Since MDA is just a visionary approach
to software development, without a concrete specification
behind it, literature on the subject is not difficult to find
[13][14][15], but many different questions still have to be
answered [16].

Before going any further, referring to the “myth of abso-
lute platform independence” and “platform relativism”
[17], and in order not to leave any doubts or to risk any mis-
interpretations, we would like to make clear that, in the con-
text of this paper, we consider the middleware to be our
MDA platform, and not the operating system, or anything
else. Moreover, even though MDA is completely indepen-
dent of any modeling language, the Unified Modeling Lan-
guage (UML) [18][19] established itself as the de-facto
standard. As a consequence, we only focus on the UML
support for MDA.

From a pragmatic point of view, in order to be able to re-
alize the code generation step of the MDA vision in the con-
text of distributed enterprise systems, MDA needs to pro-
vide support for understanding, describing, and implement-
ing different middleware-specific concerns, such as
distribution, interoperability, concurrency, transactions, se-
curity, and so on, also referred to as pervasive services in
MDA’s PIM terminology [2]. However, the current UML
does not provide any specific or standard support for mod-

Proceedings of the 8th IEEE Intl Enterprise Distributed Object Computing Conf (EDOC 2004)

1541-7719/04 $20.00 © 2004 IEEE

eling pervasive services. What it does offer, is the possibil-
ity to “extend” the UML metamodel through, and only
through, profiling, which specifies how specific UML mod-
el elements are customized and extended with new seman-
tics as if they were instances of new “virtual” metamodel
constructs. This unique position of UML profiles makes
them play a key role in MDA, since developers must know
about, or define, the metamodels of their input and output
models before implementing any model transformation.

The Enterprise Fondue software development method
[20] proposes a systematic approach to addressing perva-
sive services in an MDA-compliant manner, at different
levels of abstraction, through incremental refinement steps
along middleware-specific concern-dimensions. In order to
prove the feasibility of the method, we consider in this pa-
per a concrete middleware concern, namely distribution,
and we use the CORBA technology to illustrate how the re-
finement process is applied to a concrete example. The
main contribution of this paper is a hierarchy of UML pro-
files that address the distribution concern in an MDA-ori-
ented fashion at different levels of abstraction, together with
model transformations that incrementally refine existing
design models (within the same or between different MDA-
levels) along distribution-related concern-dimensions and
in conformance to the proposed UML profiles. We also
show how concrete implementation code can be generated
for a specific middleware infrastructure.

The outline of the rest of this paper is as follows:
Section 2 provides the motivation of this work by highlight-
ing some insufficiencies in the current UML diagrams for
representing distribution-related information; Section 3,
based on the Enterprise Fondue software development
method, shows how design models are incrementally re-
fined along the distribution concern-dimension; Section 4
introduces the hierarchy of UML profiles; Section 5 pre-
sents the MTL model transformations that realize the re-
finement process; Section 6 describes the Parallax support
for generating code targeted at specific middleware infra-
structures, and Section 7 draws some conclusions and pre-
sents future work directions.

2. From Object-Oriented Designs to
Distributed Systems

From a rather pragmatic point of view, we argue in this
section that UML diagrams lack precision when it comes to
providing specific distribution information that is typically
required for generating distribution code out of UML mod-
els.

Let’s consider the object-oriented design of a simple
Bank system, like the one illustrated in Figure 1. We con-
sider the example to be enough self-explaining for not en-

tering into more details. It is important to mention neverthe-
less that not all designs follow the design by contract prin-
ciples [21][22]. Typically, the interfaces in Figure 1 do not
exist and clients act directly on the Bank, or on the Account,
respectively. In that case, an intermediate “extract interface
refactoring” [23] step is required in order to refactor the de-
sign and enforce good design principles.

Once we have a “good” design, based on interfaces, we
would like to automate the distribution of such object-ori-
ented designs on different middleware infrastructures, and
we would like to achieve this as transparently as possible
for the developer.

One key aspect of distributed systems is their location
transparency. Typically, registries are used to store the lo-
cation of distributed objects. Clients find and use services
(i.e., the interfaces of distributed objects that were already
bound into registries) and do not care where they are locat-
ed. Flexibility is very much increased, since distributed ob-
jects can be moved around and run on different machines,
without any impact on the client side. It is only the informa-
tion published in registries, and the registries themselves,
that clients and distributed objects must agree upon.

Besides binding distributed objects into registries, there
is also the problem of distributed interfaces. If we have a
closer look at the Bank::createAccount(...) or
Bank::getAccount(...) methods, we notice they both
return AccountI interfaces to the client. If we consider, for
example, the CORBA technology for implementing the dis-
tributed system, code generators must generate a CORBA
IDL for the AccountI interface as well, otherwise the
AccountI interface cannot be passed around in a CORBA
distributed setting. As a consequence, this interface must

Figure 1. The Bank example

*
 1bank

accounts

Client

Bank

+createAccount(name : String, bal : Double) : AccountI
+getAccount(name : String) : AccountI
+transfer(ac1 : String, ac2 : String, amount : Double)
#getAccountList() : Account [*]

«Interface»
AccountI

+getBalance() : Double
+withdraw(amount : Double)
+deposit(amount : Double)

Account

-name : String
-balance : Double

+getBalance() : Double
+withdraw(amount : Double)
+deposit(amount : Double)
+setBalance(amount : Double)

«Interface»
BankI

+createAccount(name : String, bal : Double) : AccountI
+getAccount(name : String) : AccountI
+transfer(ac1 : String, ac2 : String, amount : Double)

Proceedings of the 8th IEEE Intl Enterprise Distributed Object Computing Conf (EDOC 2004)

1541-7719/04 $20.00 © 2004 IEEE

have been previously marked as distributed inside the de-
sign model, so that code generators know to deal with it
properly.

As a conclusion, in order to be able to generate distribu-
tion code for a specific middleware infrastructure, design
models must be refined and enhanced with distribution re-
lated information. But the question is how to model such
distribution-related information in UML? How to specify
that an interface should be distributed? How to specify that
an object instance of class Bank should be the entry point of
the distributed system? How to differentiate that object
from other objects in the model in order to be able to bind it
into a naming registry? How to infer that, because the
BankI interface should be distributed, the AccountI inter-
face should be distributed as well?

Of course, we are aware that component-oriented mod-
els address some of these issues up to a certain level through
component and deployment diagrams. However, from the
implementation point of view, when it comes to generating
distribution code, we still have to rely on object-oriented
programming constructs and specific middleware support.
Therefore, the work presented in this paper focuses only on
the distribution of object-oriented designs, presenting new
UML modeling elements for addressing distribution, and
stressing the amount of distribution code that can be auto-
matically generated from the enhanced object-oriented
models. Moreover, we believe that it is a very good prelim-
inary step before analyzing the actual support for generating
a similar amount of distribution code out of component-ori-
ented designs based on information that can be retrieved or
inferred from component and deployment diagrams.

3. Enterprise Fondue and the Distribution
Concern

In this section, after a concise overview of Enterprise
Fondue’s terminology, we show how the questions raised in
the previous section can be answered in Enterprise Fondue
by incrementally refining existing models along distribu-
tion-related concern-dimensions.

The Enterprise Fondue software development method
[20] brings together four important paradigms in software
engineering, namely Component-Based Software Engi-
neering (CBSE), Separation of Concerns (SoC), Model
Driven Architecture (MDA), and Aspect-Oriented Pro-
gramming (AOP), and shows how they can complement
each other at different stages in the development life-cycle
of enterprise, middleware-mediated applications. The
method identifies five layers corresponding to different lev-
els of abstraction, each layer addressing specific concerns
that pertain to enterprise applications in general. Model
transformations are used to refine design models inside the

same layer, or between different layers, along specific con-
cern-dimensions.

For consistency reasons, we tend to use the terms mid-
dleware-specific concern-dimensions in relation with the
refining activity (“refining along a dimension”), and mid-
dleware-specific concerns in all other contexts. Neverthe-
less, both terminologies refer to the same concepts, i.e., dis-
tribution, concurrency, transactions, security, and so on.

Figure 2 presents how the refinement process in Enter-
prise Fondue evolves from one abstraction level to the next
one by incremental refinements along different concern-di-
mensions. We use a mixed notation for representing the
process flow, on one hand, and for representing UML 2.0
dependencies or relationships between modules, on the oth-
er hand.

MTL1 refines along a middleware-specific concern-di-
mension (Cx) according to an associated UML profile for
that concern. This transformation is performed inside the
Concern-Driven Object-Oriented Models Layer (L2) as de-
fined in Enterprise Fondue. In the context of this paper,
MTL1 will refine along the distribution concern-dimension.
However, several MTL1s can be applied at this layer, ad-
dressing different middleware-specific concerns.

The refinement along the technology-dimension (Ty) is
performed by MTL2. As we tried to show in Figure 2, MTL2
is a sequence of model transformations (not necessarily
two). One such transformation (MTL21) will always refine
the model along the technology-dimension according to the
UML profile for that technology. All the other transforma-
tions in the sequence correspond to refinements along mid-
dleware-specific concern-dimensions according to UML
profiles for those concerns on the specific technology (Cx
on Ty). All these transformations are performed inside the
Technology-Dependent Layer (L1) as defined in Enterprise
Fondue. For example, by refining along the CORBA tech-
nology-dimension, we will first apply the UML Profile for
CORBA [24], and then we will apply the profile addressing
the distribution concern on the CORBA technology (the
CORBADistributionRealizationProfile, as it will be
introduced in section 4.3).

The last two refinements, along the platform-dimension
(Pz) and language-dimension (Lw), are performed in a sin-
gle code generation step inside Parallax [25], which covers
both the Platform-Dependent and Language-Dependent
Layers of Enterprise Fondue (L0). In order to achieve this
step, as we will see in more details in section 6, Parallax
must be enabled with a plug-in that knows how to generate
code for the concern Cx, with the technology Ty, on the plat-
form Pz, and using the programming language Lw.

As this paper only focuses on the distribution concern
and less on the CORBA technology, which was merely con-
sidered for the sake of providing a concrete refinement, we

Proceedings of the 8th IEEE Intl Enterprise Distributed Object Computing Conf (EDOC 2004)

1541-7719/04 $20.00 © 2004 IEEE

will only present profiles and transformations that involve
the distribution concern. As a consequence, the MTL21
transformation will be omitted, and only the MTL22 will be
presented, along with MTL1 and the Parallax support.

In the following three sections we discuss in more details
the key elements that support the Enterprise Fondue method
when refining along the distribution concern-dimension,

namely the UML Profiles for Distribution for describing
distribution-specific concepts at different MDA-levels of
abstraction, the MTL model transformations for actually
applying these profiles to concrete designs, and the Parallax
support for code generation.

4. UML Profiles to Address the Distribution
Concern (UML-D Profiles)

The hierarchy of UML profiles presented in this section
addresses the distribution concern in an MDA-oriented
fashion at three different levels of abstraction: at a platform-
independent level, at an abstract realization level, and at a
concrete realization level for the CORBA technology (see
Figure 3). We rely on specialization relationships between
distribution profiles: each specialization introduces new
modeling elements or simply refines the already existing
ones.

UML provides a standard set of extension mechanisms,
including stereotypes, tag definitions, tagged values, and
constraints. These mechanisms are used to specify how
UML model elements can be customized and extended with
new semantics. A coherent set of such extensions, defined
for a specific domain or purpose, constitutes a UML profile.
The stereotype concept provides a way of branding (classi-
fying) model elements. A stereotype creates a “virtual”
UML metaclass by extending an existing UML metaclass
with new metaattributes and additional semantics. Metaat-
tributes are specified as tag definitions, which introduce
new kinds of properties that may be attached to model ele-
ments. The actual properties of individual model elements
are specified using tagged values. Simplifying, we could
also say that a tag definition specifies the tagged values that
can be attached to a kind of model element. The constraint
concept allows new semantics to be specified linguistically
for a model element. The language used can be a special
constraint language (such as the Object Constraint Lan-
guage, OCL [26]), a programming language, a mathemati-
cal notation, or even natural language.

A certain number of UML profiles have already been de-
fined, either for generic purposes, such as the SPEM Profile
[27], or to deal with specific middleware technologies, such
as the CORBA profile [24] and the EJB Profile [28], or to
address enterprise distributed systems, such as the EDOC
set of profiles [29], and the list could very well continue.

When defining a UML profile, certain choices have to be
made regarding the “dialect” it proposes. From this point of
view, we are aware that, in some cases, better terminology
might have been chosen to express the introduced concepts
and their intended semantics/purpose. Opinions, whether
«Remote», or anything else, would have been a better
choice than «Distributed» (to be presented in

Plug-in for
Cx, Ty, Pz, Lw

UML Design Model

UML Metamodel

UML Profile
for

Concern Cx

UML Model
with elements for

Cx

Technology Profile

UML Profile
for

Technology Ty

UML Profile
for

Cx on Ty

UML Model
with elements for

Cx on Ty

MTL1

MTL2

MTL21

MTL22

Parallax

configuration

configuration

Code
for Platform Pz

in Language Lw

Ty-XML-Config-File

in

in

«instanciate»

«merge»

out

«uses»

«apply»

in

out

«apply»

«apply»

in

in

out out

Refinement along
technology-
dimension

Refinement along
platform-dimension &
language-dimension

«apply»

L0

L1

L2

Refinement along
middleware-specific
concern-dimension

Cx - a middleware-specific concern, e.g., distribution
Ty - a middleware technology, e.g., CORBA
Pz - a middleware platform, e.g., OpenORB
Lw - a programming language, e.g., Java
MTL - MTL Model Transformation

Figure 2. The refinement process
in Enterprise Fondue

Proceedings of the 8th IEEE Intl Enterprise Distributed Object Computing Conf (EDOC 2004)

1541-7719/04 $20.00 © 2004 IEEE

section 4.1), are divided and go beyond the scope of this pa-
per.

Relying on Figure 3, the rest of this section describes in
more details the UML-D Profiles, presenting the new mod-
eling elements that we introduced at each level of abstrac-
tion in order to address distribution-related concerns. Well-
formedness rules, expressing OCL constraints on model el-
ements, are specified each time the validity of the models
needs to be enforced. Natural language is used for describ-
ing the semantics of the UML extensions that we propose in
our profiles. For the sake of clarity, we described our pro-
files using the UML 2.0 notation with some slight exten-
sions that are explained in more details in section 4.4.

4.1. UML Distribution Profile

The purpose of distribution is to logically, or even phys-
ically separate communicating elements, typically a “core”
system from its users. In UML, what these elements know
about each other is described in terms of interfaces. UML
interfaces are defined as sets of coherent publicly available
features and obligations, fulfilled at runtime by instances of
classes realizing them. The distribution process should lead
to independent subsystems communicating through known
interfaces. We qualify these interfaces as distributed. This
additional information can be added to the model of the sys-
tem by applying the DistributionProfile presented in
Figure 3 �.

To make a difference between what interfaces are used
for communication within a system and between systems,
the profile defines the «Distributed» stereotype as an exten-
sion of the Interface metaclass as shown in Figure 3 �.
All features defined within a «Distributed» interface are
remotely available. In the case a «Distributed» interface
extends other interfaces, available remote features are only
those defined within «Distributed» interfaces. In this
way, we clearly separate between distributed and non-dis-
tributed interfaces even within the same hierarchy of inter-
faces. For instance, the following OCL query may be de-
fined within the scope of the «Distributed» stereotype to
find all its remotely available operations:

context Distributed
def: allRemoteOperations : Set(Operation) =
 self.ownedOperation->union(
 self.allParents()
 ->select(oclIsKindOf(Distributed))
 .ownedOperation
)

We have assumed here that the predefined OCL
oclIsKindOf operation holds true if a model element has
the stereotype passed as parameter. A similar query may
also be defined to know about all remotely available at-
tributes.

«metaclass»
InstanceSpecification

1..*

distributed0..*

servants

«stereotype»
Distributed

«stereotype»
Servant

«stereotype»
NamingRegistry «stereotype»

NameExposition

«stereotype»
CORBANamingService

host : String
port : String

«stereotype»
CORBANameExposition

{inv: self.exposed.oclAsType(CORBANameExposition)
->forAll(exp1, exp2 : CORBANameExposition |
 exp1 = exp2
 or exp1.exposedNames->intersection(exp2.exposedNames)->isEmpty()
)}

«profile»
DistributionProfile

«metaclass»
Interface

{inv: self.classifier->forAll(c | c.conformsTo(self.distributed))}

«stereotype»
InterfaceExposition«stereotype»

ServiceRegistry

publisher

exposed

«metaclass»
Comment

«stereotype»
Publisher

«stereotype»
Exposition

*1

*

{inv: self.annotatedElement
 ->includesAll(Set{
 self.servant,
 self.publisher})}

1..*

«stereotype»
NameExposition

exposedNames : String [1..*]

«metaclass»
Interface

«stereotype»
NamingRegistry

«stereotype»
Servant

«stereotype»
PublishedServant expositions

«profile»
CORBADistributionRealizationProfile

«merge»

«profile»
AbstractDistributionRealizationProfile

«merge»

exposedInterfaces

servant

1

{inv:self.publisher.oclIsKindOf(NamingRegistry)}

{inv: self.annotatedElement->includesAll(self.exposedInterfaces)
 inv:self.publisher.oclIsKindOf(ServiceRegistry)
 inv:self.exposedInterfaces->forAll(i | self.servant.distributed.compliesTo(i))}

�

�

�

�
�

�

Figure 3. MDA-oriented hierarchy
of UML-D Profiles

�

�

	

Proceedings of the 8th IEEE Intl Enterprise Distributed Object Computing Conf (EDOC 2004)

1541-7719/04 $20.00 © 2004 IEEE

Moreover, it is also necessary to indicate key instances
that the environment needs to know in order to start an in-
teraction with the system as an entity. They are identified by
applying the «Servant» stereotype. As these instances re-
ceive invocations from the environment, their class must re-
alize a “well-known” «Distributed» interface, that is why
«Servant» and «Distributed» stereotypes are associated
as shown in Figure 3 �. This allows one, once these stereo-
types are applied to the corresponding instances and inter-
faces, to indicate at the model level what are the «Servant»
instances of a «Distributed» interface, and what are the
«Distributed» interfaces of a «Servant» instance. As in-
dicated by the multiplicities of the association �, a
«Servant» instance must realize at least one
«Distributed» interface, otherwise a client application
does not know how to communicate with it. On the other
side, a «Distributed» interface may be connected to any
number of «Servant» objects. If none, it means the given
interface does not participate in any interaction set-up. If a
«Distributed» interface defines many «Servant» ob-
jects, this means the system has many entry points with this
interface.

For the profiled model to be consistent, it is important to
add a constraint stating that one of the classes of each
«Servant» object must realize the «Distributed» inter-
face it is related to through the distributed

association end �. This constraint is given in Figure 3 �.

Note that, even though UML 2.0 does not allow the use
of associations between stereotypes, we used this kind of
association here only for the sake of legibility and we ex-
plain its intended semantics in section 4.4.

4.2. UML Abstract Distribution Realization
Profile

The purpose of the AbstractDistributionRealizationPro-
file is to provide a framework to describe which «Servant»

instances are made available to the outside world, how, and
where. We enter here the technology-dependent layer (L1)
described in Figure 2. As this profile specializes entities de-
scribed in the DistributionProfile, it merges this latter
profile and as a consequence integrates into it all its stereo-
types and tag definitions.

The «PublishedServant» stereotype is a specialization of
«Servant», in order to show that «Servant» instances may
be exposed to the outside world. Such «Servant» instances
will be further referred as «PublishedServant» instances
(PSI). Due to the specialization, the «PublishedServant»
stereotype inherits the InstanceSpecification base
class, the distributed tag definition, and the
constraint �, which must now hold for all elements con-
forming to this stereotype as well.

A «Publisher» is a «PublishedServant» instance spe-
cialized in making available a given «PublishedServant»
to the outside world. This means that in order to interact
with a PSI, an actor from the environment should first lo-
cate it by sending a request to a «Publisher» instance. If
the Bank example in Figure 1, for instance, is made distrib-
uted, a Client should first retrieve the right «Servant»
Bank instance by sending a request to a «Publisher» in-
stance. How an external actor localizes a «Publisher» is
voluntarily left unresolved and should be defined by spe-
cializing the «Publisher» stereotype according to the con-
crete technology to be used. This is the reason why the
«Publisher» stereotype is abstract. Moreover, since the
«Publisher» stereotype inherits the «PublishedServ-
ant» stereotype, an instance stereotyped «Publisher» is
also a PSI, and may be published by another «Publisher»
instance.

The relationship between a «PublishedServant» and a
«Publisher» is expressed by the «Exposition» stereotype.
Unfortunately, there is not really an ideal relationship be-
tween instances in the UML metamodel that this stereotype
could extend. Therefore, we decided to make the Comment
metaclass the base class of this stereotype. Information of
what is published and who is the publisher is gathered
through the associations � and � respectively. The
constraint � requires all the «Exposition» comments to
be attached to both the «Servant» and the «Publisher»
instances. A given PSI may be published several times
within several «Publisher» instances, and conversely, a
«Publisher» may expose several PSIs, all these relation-
ships being modeled through «Exposition» comments.

«Publisher» and «Exposition» are abstract stereo-
types. Therefore, they cannot be applied to a model element
as such, because some registration information needs to be
provided. We include therefore in the profile a kind of “ref-
erence implementation”, although it would be possible to
define an additional independent profile that extends the
AbstractDistributionRealizationProfile and de-
scribes additional information required by another imple-
mentation mechanism.

As a first reference implementation mechanism, we pro-
pose to register a PSI by names, which are character strings,
within a «Publisher» instance. We therefore define
«NamingRegistry» as an extension of the «Publisher» ste-
reotype, together with the «NameExposition» as an exten-
sion of the «Exposition» stereotype. The registration
names are stored in the exposedNames tag definition, that is
defined in the «NameExposition» stereotype. This tag def-
inition has a 1..* multiplicity meaning that the PSI can be
exposed by at least one name. A «NamingRegistry» may
only publish PSIs through a «NameExposition», and a
«NameExposition» may only refer to a «NamingRegis-

Proceedings of the 8th IEEE Intl Enterprise Distributed Object Computing Conf (EDOC 2004)

1541-7719/04 $20.00 © 2004 IEEE

try». This is enforced by the constraint �. This kind of ex-
position mechanism looks like the one of the phone directo-
ry of residents (“white pages”).

As a second mechanism, we propose to register a PSI
with the services it can offer. For instance, one can ask the
environment for a printer, provided that there is a printer
that knows how to print PostScript documents. This mech-
anism is described by the couple of stereotypes «Service-
Registry» for the publishing part and «InterfaceExposition»
for the exposition part. This time the registration is per-
formed by means of interfaces, referenced by the tag defini-
tion exposedInterfaces within the «InterfaceExposi-
tion» stereotype. Once again, a constraint () enforces
that these two stereotypes are used together and only togeth-
er. This kind of exposition mechanism looks like the one of
the business phone directory (“yellow pages”).

4.3. UML CORBA Distribution Realization
Profile

The CORBADistributionRealizationProfile addresses
the realization of the distribution concern when the imple-
mentation is supposed to use the CORBA technology. It
takes advantage of the AbstractDistributionRealiza-
tionProfile by adapting its abstract concepts to the COR-
BA technology, so that a code generator has enough infor-
mation to generate the necessary distribution code.

The «CORBANameExposition» stereotype represents a
«NameExposition» using the CORBA technology. It ex-
tends the «NameExposition» but does not add particular
information to it. The idea is to state clearly that a PSI is
registered by name using the CORBA technology. The
same holds for the «CORBANamingService» stereotype
that extends the «NamingRegistry». In order for an actor
of the environment to find the «CORBANamingService», we
add the host and port tag definitions. As previously, an
OCL constraint (
) enforces that these two stereotypes
work together and only together. This constraint also en-
forces that exposition names are all different within the con-
text of a «Publisher».

We chose to describe here only the CORBA technology,
but the same principle may be applied to any kind of mid-
dleware technology, possibly with additional intermediate
profile specialization steps.

4.4. Notation, Semantics, and UML Profile
Compatibility

We chose to present the profiles in Figure 3 using the
UML 2.0 notation because of its readability. However, for
the sake of clarity, we have used associations between ste-
reotypes despite the fact that the UML 2.0 specification for-
bids it, except for subsetting a metaassociation belonging to

the metamodel. E.g., for the associations � and � in
Figure 3 a metaassociation exists between the Comment and
Element metaclasses with a many-to-many multiplicity. In
fact, this metaassociation is navigated by the constraint �.
But the rule fails for the association � in Figure 3. To give
a precise semantics to the stereotype association construct,
we rely on UML 1.5: an association between two stereo-
types acts as two crossed tag definitions together with con-
straints enforcing that they are indeed bidirectional, like
classical association end values. As an example, Figure 4
shows the DistributionProfile as a standard UML 1.5
profile. The association � in Figure 3 is encoded in
Figure 4 in the tag definitions � and � together with the
constraints � and � enforcing that they are indeed crossed.
Because of differences between the UML 1.5 and 2.0 meta-
models, the UML 2.0 InstanceSpecification metaclass
becomes the UML 1.5 Instance metaclass and the
constraint � in Figure 3 is encoded by the constraint � in
Figure 4. Table 1 provides some guidelines for mapping
UML 2.0 to UML 1.5 profiles.

Table 1. UML backward compatibility

UML 2.0 UML 1.5

«merge» dependency package generalization

InstanceSpecification
metaclass

Instance
metaclass

base class arrow «stereotype»

dependency arrow

stereotype attribute stereotype tag definition

association between ste-
reotypes (within the scope
of this work)

crossed tag definitions

Figure 4. The DistributionProfile
in UML 1.5

«metaclass»
Interface

{inv: self.classifier->forAll(c |
 c.allParents->including(c)->exists(self.distributed))
 inv: self.distributed->forAll(d | d.servant->includes(self))}

«metaclass»
Instance

«stereotype»
Distributed

«stereotype»

«stereotype»
Servant

«stereotype»

servants [0..*]
«taggedValue»

distributed [1..*]
«taggedValue»

{inv: self.servants->forAll(s | s.distributed->includes(self))}

�

�

�

�

�

Proceedings of the 8th IEEE Intl Enterprise Distributed Object Computing Conf (EDOC 2004)

1541-7719/04 $20.00 © 2004 IEEE

5. MTL Model Transformations for
Applying the UML-D Profiles

After providing some background on existing model
transformation languages, and motivating some advantages
of the Model Transformation Language (MTL), we present
in this section the model transformations that incrementally
refine existing design models according to the UML-D Pro-
files introduced in the previous section. The Bank example
(Figure 1) is used for illustrating the refinement process.

Model transformations and language support for imple-
menting them are the much needed keystones for OMG’s
MDA vision [30]. To fill this gap, OMG has posted a Re-
quest for Proposal called MOF 2.0 Query/Views/Transfor-
mations RFP [31], which has been answered by eight differ-
ent initial submissions, only five revised submissions, and
only two second revised submissions (up to this date). Most
of the last ones already propose tool support for their sub-
missions, like DSTC/IBM/CBOP [32], OpenQVT [33], or
QVT-Partners [34].

However, outside the QVT submission process, other
solutions to model transformations exist. Some are specific
to a CASE tool, such as Objecteering J [35], others are spe-
cific to a repository, like ModFact [36], while still others are
providing an API for specific programming languages, such
as JMI [37], and the list could continue. Each solution has
its own advantages and disadvantages, making the selection
process rather difficult. We have chosen the INRIA Model
Transformation Language (MTL) [38] according to the fol-
lowing requirements:

• it can transform XMI-serialized UML models,

• it provides support for the UML profiling mechanism,

• the compiler is maintained and easily available,

• it is independent of CASE tools and model reposito-
ries,

• it is an imperative language, and thus more readable,

• it is supported by an active community with strong in-
tentions to evolve towards the upcoming OMG MOF
QVT standard.

5.1. Refining Along the Distribution Concern-
Dimension (MTL1-D)

The distribution transformation (MTL1-D) is refining
centralized design models along the distribution concern-
dimension according to the DistributionProfile pre-
sented in section 4.1. Its name indicates, on one hand, that
it belongs to the MTL1 family of transformations (as shown
in Figure 2), and on the other hand, that it is related to the
distribution concern.

In order to achieve the distribution, the transformation
requires the developer to provide information about the in-
terfaces that the «Servant» object should realize. These
special interfaces will be further referred as «Servant» in-
terfaces (SIs). If several «Servant» objects are needed,
then the transformation may be called several times. As al-
ready mentioned in section 2, we rely on the premise that all
interactions with the environment occur through well-de-
fined interfaces.

In the first step, the MTL1-D transformation “imports” the
DistributionProfile into the model, making available
the UML extensions it defines. The second step is to find
the right classifier for the «Servant» object. Note that if
more than one classifier realizes all the interfaces the devel-
oper has specified, then the MTL1-D transformation may
choose an arbitrary one, or ask the developer to choose
among the possible realizations; if no class is found, then
the transformation ends in error, without modifying the
model. Once the right classifier is found, the corresponding
SIs are marked with the «Distributed» stereotype and an
object instance of the found classifier is created and marked
with the «Servant» stereotype. As these stereotypes are as-
sociated, it is still necessary to provide crossed tagged val-
ues as specified in section 4.4. This means that the
«Servant» object references its SIs by means of the
distributed tagged value, and each SI references its
«Servant» objects by means of the servants tagged val-
ue, according to the DistributionProfile.

The last step of the MTL1-D transformation is to infer all
interfaces that participate in interactions with the environ-
ment and to stereotype them «Distributed» as well. To
this end, the transformation explores, starting from the pro-
vided SIs, the types of parameters of all operations, and the
types of all attributes of each interface. During exploration,
all encountered interface types are stereotyped
«Distributed» (if not yet the case), and recursive explora-
tions are started for each such interface. The MTL code for
this exploration is shown in Figure 5.

Figure 5. The MTL1-D transformation:
exploring operations part

//Within the MTL class Distributor
//- toDistribute are the interfaces to be distributed
treatOperationDependencies() {

 foreach (op : m::Core::Feature)
 in (toDistribute.feature)

 where (op.oclIsKindOf(!m::Core::Operation!)) {

 foreach (pa : m::Core::Parameter)
 in (op.parameter) {

new Distributor().init(self,pa.type).run();
 }
 }
}

Proceedings of the 8th IEEE Intl Enterprise Distributed Object Computing Conf (EDOC 2004)

1541-7719/04 $20.00 © 2004 IEEE

As an example, we show in Figure 6 the outcome of the
MTL1-D transformation on the Bank example when BankI is
the only SI requested by the developer. As one can see,
BankI gets stereotyped as «Distributed» (�). An object
of class Bank, the only classifier realizing the BankI inter-
face, is created and stereotyped «Servant» (�). The
tagged values are shown in grey colored notes. Due to the
association between «Distributed» and «Servant» ste-
reotypes (as defined in the profile), the «Distributed»
BankI interface references its SIs by means of the
servants tagged value (�), and the «Servant» b referenc-
es the «Distributed» BankI interface by means of the
distributed tagged value (�). As the «Distributed»
BankI interface contains operations, such as
createAccount and getAccount, involving the AccountI
interface, this last interface is stereotyped «Distributed»
as well, but with an empty servants tagged value (�).

5.2. Refining Distribution Along the CORBA
Technology-Dimension (MTL22-D)

The CORBA distribution realization transformation
(MTL22-D) is refining distributed models along the CORBA
technology-dimension. More precisely, it refines models, to
which the DistributionProfile was already applied, to
ones that are more specific about how the distribution con-
cern is actually implemented on the CORBA technology.
As previously, the name indicates that it belongs to the
MTL22 family of transformations (as shown in Figure 2), on
one hand, and that it is related to the distribution concern,
on the other hand.

In order to be able to apply the CORBADistribution-
RealizationProfile, the MTL22-D transformation re-
quires the developer to provide all the new information that
this profile adds with respect to the DistributionPro-

file. Indeed, MTL22-D needs to be able to provide each
CORBA publisher (i.e., CORBA Naming Service [39],
«CORBANamingService») with its name, host and port,
and each PSI with its expositions («CORBANameEx-
position») containing the names to be exposed
(exposedNames) and the publisher to be used (publisher).
The transformation does not integrate any «Inter-

faceExposition», which is more related to the Trading
Service [40] of CORBA that is not discussed in this paper.

Like for MTL1-D, the first step of the MTL22-D transfor-
mation is to “import” the CORBADistributionReali-
zationProfile into the model. The MTL22-D also “im-
ports” standard CORBA libraries, like the interface of the
CORBA publisher, which is org::omg::CosNam-

ing::NamingServiceExt. Then, the transformation cre-
ates «CORBANamingService» publisher objects and sets
their host and port tagged values according to the provid-
ed parameters. Since «CORBANamingService» inherits
from the «Servant» stereotype the distributed tag defi-
nition, and because of its multiplicity 1..*, it is necessary
to provide it with a value. The other inherited tagged values,
namely exposed and expositions, are not mandatory as
their lower bound multiplicity is zero and because they
would have no meaning for the «CORBANamingService»

«Interface»
«Distributed»

BankI

«Interface»
«Distributed»

AccountI

Bank Account

«Distributed»
 servants = Set{b}

«Servant»
b:Bank

«Servant»
 distributed= Set{BankI}

Class Diagram

Object Diagram

«Distributed»
 servants = Set{}

�

�

�

�

Figure 6. The MTL1-D outcome
for the Bank example

�

//The exposition
//- publisher is the publisher object
//- servant is the published servant object
//- profile is an MTL proxy for the
// CORBADistributionRealizationProfile
//- expositionName is the provided name
// of the exposition
//- publishedNames are the names the servant
// is registered with
ex := new m::Core::Comment();
ex.name := expositionName;
associate (

comment := ex : m::Core::Comment,
annotatedElement := servant

 : m::Core::ModelElement);
associate (

comment := ex : m::Core::Comment,
annotatedElement := publisher

 : m::Core::ModelElement);

profile.applyStereotype(ex,
profile.cORBANameExposition);

profile.setTaggedValueData(servant,
profile.publishedServantExpositionsTag,ex);

profile.setTaggedValueData(publisher,
profile.publisherExposedTag, ex);

profile.setTaggedValueData(ex,
profile.expositionServantTag, servant);

profile.setTaggedValueData(ex,
profile.expositionPublisherTag, publisher);

profile.setTaggedValueData(ex,
profile.nameExpositionExposedNamesTag,
publishedNames);

Figure 7. The MTL22-D transformation:
creating exposition part

Proceedings of the 8th IEEE Intl Enterprise Distributed Object Computing Conf (EDOC 2004)

1541-7719/04 $20.00 © 2004 IEEE

publisher. Moreover, as the «CORBANamingService» pub-
lisher instance provides behaviors described in the
NamingServiceExt interface, this interface must be stereo-
typed as «Distributed». The distributed and
servants tagged values are used to relate the instance and
the interface together.

At the end, the MTL22-D transformation creates the expo-
sitions as specified by the developer. As defined in the pro-
file, each «CORBANameExposition» is a Comment on the
PSI and the «Publisher» instance, which are referenced
through the servant and publisher tagged values respec-
tively. Both the PSI and the «Publisher»

(«CORBANamingService» in our case) know about the
«Exposition» comment by means of the expositions
and exposed tagged values respectively. The exposed
names of a «CORBANameExposition» are stored in the
exposedNames tagged value. Figure 7 shows the MTL code
for this last step.

The outcome of the MTL22-D transformation for the
Bank example is shown in Figure 8. The source model for
the transformation is the one shown in Figure 6. The
MTL22-D provides one «CORBANamingService» publisher
object cns (�) and sets its distributed tagged value to
reference the NamingServiceExt interface. The
«Distributed» stereotype was applied to this last interface
and its servants tagged value was set to reference the cns,
but this is not depicted here. The diagram also shows the b
object, to which the «PublishedServant» stereotype (�)
was applied. A new comment, named BankExposition,
with stereotype «CORBANameExposition», represents the
expositions (�), and it is referenced by the expositions

and exposed tagged values in the b and cns instances re-
spectively. This comment annotates these instances and ref-
erences them with the servant and publisher tagged val-
ues respectively. For the sake of clarity, all tagged values
have been provided, even if empty, and classified according
to the stereotype in which they were declared.

6. The Parallax Support

After describing the UML profiles for distribution and
presenting how model transformations refine existing de-
sign models according to these profiles, it is now time to
move to the last phase of the Enterprise Fondue process and
address how code generation for a specific CORBA plat-
form, namely OpenORB [41], is supported through the Par-
allax framework.

The main purpose of the XML Metadata Interchange
(XMI) [42][43] is to enable easy interchange of metadata
between modeling tools (based on UML) and between tools
and metadata repositories (based on MOF [44]) in distribut-
ed heterogeneous environments. We rely on XMI when
moving from different CASE tools to model transformation
languages, and then to Parallax, in the MDA tool-chain of
the Enterprise Fondue process.

Parallax [25] is a framework for defining different archi-
tectural views for component-based middleware-mediated
applications. Implemented as an Eclipse plug-in [45][46],
Parallax accepts as input application designs exported as
XMI files from different UML modeling tools, such as
Poseidon, IBM Rational Rose, Borland Together, etc., and
allows developers to look at these designs from different
perspectives by providing an extensible system of views.

Middleware-specific views are dedicated to middle-
ware-specific concerns, such as distribution, transactions,
security, etc., provided that the imported XMI file already
contains elements describing the middleware-specific con-
cerns as defined in their corresponding UML profiles. Par-
allax, based on aspect-oriented support and through a well-
defined system of plug-ins, enables developers to view their
designs through a prism of middleware platforms and to see
how middleware-specific concerns are actually implement-
ed at code level. Each such view is supported via a separate
middleware-specific plug-in that can be loaded/installed
into Parallax. Each middleware-specific plug-in has four
dependency dimensions (4-DD); it is at the same time mid-
dleware-concern dependent, technology dependent, plat-
form dependent, and language dependent, e.g., a plug-in for
distribution, with EJB, on BEA WebLogic, using Java.

For more information about Parallax and about other de-
sign-specific views that it can provide, please refer to our
web site at [25].

«PublishedServant»
b:Bank

«CORBANamingService»
cns:NamingServiceExt

«CORBANameExposition»
BankExposition

«Exposition»
 servant= b
 publisher= cns

 «NameExposition»
 exposedNames= Set{'BCV'}

 «CORBANameExposition»

«Servant»
 distributed= Set{BankI}

 «PublishedServant»
 expositions= Set{BankExposition}

«Servant»
 distributed= Set{NamingServiceExt}

 «PublishedServant»
 expositions= Set{}

 «Publisher»
 exposed= Set{BankExposition}

 «NamingRegistry»

«CORBANamingService»
 host= '127.0.0.1'
 port= '3028'

Figure 8. The MTL22-D outcome
for the Bank example

�

�

�

�

�

Proceedings of the 8th IEEE Intl Enterprise Distributed Object Computing Conf (EDOC 2004)

1541-7719/04 $20.00 © 2004 IEEE

Since we are completely relying on UML’s extension
mechanisms, and since the structure of XMI is based on the
UML metamodel, which incorporates extension mecha-
nisms as well, there is no problem in exporting design mod-
els that were refined according to the profiles introduced in
section 4, i.e., models that contain new stereotypes, tag def-
initions, or tagged values. Figure 9 shows an
XMI1.2[UML1.5] snippet corresponding to the
«PublishedServant» stereotype exactly as it was defined
in the AbstractDistributionRealizationProfile in
Figure 3. The idref a107 (Figure 9) corresponds to the
generalization between «PublishedServant» and
«Servant». The stereotype’s base class and the tag defini-
tions it participates in, can also be seen in the exported XMI.

Importing into Parallax such an enhanced XMI design
model, like the one presented in Figure 8, and installing the
distribution plug-in for CORBA, on OpenORB, using Java
(see layer L0 in Figure 2), we are able to generate IDLs for
the «Distributed» interfaces along with special code
snippets for initializing and starting the ORB, and for bind-
ing the «Servant» object according to the deployment con-
figuration stored in a separate CORBA-XML-Config-File,
which is described later in this section. Figure 10 illustrates
generated code snippets on the «Servant» class side.
Please notice that for the sake of space and legibility, we did
not show how certain configuration information, like the
name “BCV” given to our «Servant» object, is in fact read
from the CORBA-XML-Config-File.

The CORBA-XML-Config-File contains what we call
the deployment configuration information (dci), as shown
in Figure 8 �. Parallax exports this information into a spe-
cialized file in order to allow for easy deployment customi-
zation. It is this CORBA-XML-Config-File that both the cli-

ent and the server applications read at startup time in order
to know how to find each other.

One should notice that the dci is specific to the technol-
ogy and not to the platform. For instance, all distribution
plug-ins for CORBA, even though supporting different im-
plementation platforms, such as OpenORB, VisiBroker,
ORBacus, etc., should use the same unique CORBA de-
ployment configuration information stored in the CORBA-
XML-Config-File. Nevertheless, when changing the tech-
nology, the AbstractDistributionRealizationPro-

file might not be extended in the same way, and therefore
the information that will have to be stored in the corre-
sponding XML-Config-File might not be the same, which
shows once again why such XML-Config-Files are tech-
nology dependent.

In order to illustrate the benefit of having a stand alone
CORBA-XML-Config-File, let’s consider a concrete exam-
ple. Suppose for a second that the same Bank system that
we have just developed fits the entire organizational struc-
ture and fulfills the entire business needs of two different
banks, and that both of them would like to buy it. We al-
ready have the code generated from Parallax that, besides
implementing the requested functionality, also reads the
dci from the CORBA-XML-Config-File. In this case, it is
very convenient to just change the dci, e.g., the name of the
bank, the location and the port of the naming service, and
immediately be able to start the second Bank system. A sim-
ilar problem arises if a bank needs to migrate a specific ser-
vice, such as the naming service, from one machine to an-
other.

In future work on the Parallax framework, we intend to
follow the Eclipse contribution circle and define extension

<UML:Stereotype xmi.id = ’a106’
 name = ’PublishedServant’
 isSpecification = ’false’ isRoot = ’false’
 isLeaf = ’false’ isAbstract = ’false’>
 <UML:Stereotype.baseClass>Instance
 </UML:Stereotype.baseClass>
 <UML:GeneralizableElement.generalization>
 <UML:Generalization xmi.idref = ’a107’/>
 </UML:GeneralizableElement.generalization>
 <UML:Stereotype.definedTag>
 <UML:TagDefinition xmi.id = ’a108’
 name = ’expositions’ isSpecification = ’false’
 tagType = ’Exposition’>
 <UML:TagDefinition.multiplicity>
 <UML:Multiplicity xmi.id = ’a109’>
 <UML:Multiplicity.range>
 <UML:MultiplicityRange xmi.id = ’a110’
 lower = ’0’ upper = ’-1’/>
 </UML:Multiplicity.range>
 </UML:Multiplicity>
 </UML:TagDefinition.multiplicity>
 </UML:TagDefinition>
 </UML:Stereotype.definedTag>
</UML:Stereotype>

Figure 9. PublishedServant stereotype

org.omg.CORBA.ORB orb = null;
org.omg.PortableServer.POA poa = null;
org.omg.CosNaming.NamingContextExt nc = null;
org.omg.CORBA.Object so = null;

java.util.Properties props = System.getProperties();
props.put("org.omg.CORBA.ORBClass",
 "org.openorb.CORBA.ORB");
props.put("org.omg.CORBA.ORBSingletonClass",
 "org.openorb.CORBA.ORBSingleton");

orb = org.omg.CORBA.ORB.init(
 "-ORBProfile=default", props);
poa = org.omg.PortableServer.POAHelper.narrow(
 orb.resolve_initial_references("RootPOA"));
poa.the_POAManager().activate();
Bank b = new Bank();
so = poa.servant_to_reference(b);

nc = org.omg.CosNaming.NamingContextExtHelper.narrow(
 orb. resolve_initial_references("NameService"));
nc.rebind(nc.to_name("BCV"), so);

orb.run();

Figure 10. Generated code in the
«Servant» class

Proceedings of the 8th IEEE Intl Enterprise Distributed Object Computing Conf (EDOC 2004)

1541-7719/04 $20.00 © 2004 IEEE

points for Parallax. Once we have published these extension
points, we enable other developers and middleware vendors
to contribute and enrich Parallax by implementing and pro-
viding the community with new Parallax plug-ins for their
favorite middleware infrastructures.

Moreover, as soon as UML modeling tools will imple-
ment the UML 2.0 specification [19] and will provide XMI
export facilities for the enhanced interactions that can ap-
pear in sequence diagrams (Fragments::In-
teractionOperators such as seq, alt, opt, break, loop,
etc.), we will enhance the code generation support inside
Parallax accordingly. Currently, the generated code corre-
sponds to the static structure (from class diagrams) and to
the behavior –to some extent– (from interactions in collab-
oration/sequence diagrams).

7. Conclusions and Future Work

For the MDA approach to software development to be-
come a reality for distributed enterprise systems, UML (as
a de-facto standard) must provide support for modeling dif-
ferent middleware-specific concerns, such as distribution,
concurrency, transactions, security, also referred to as per-
vasive services in MDA’s PIM terminology, at both plat-
form-independent and platform-specific levels. Only once
these concerns are an integral part of PSMs, code generators
will be able to generate appropriate code for specific mid-
dleware platforms.

The Enterprise Fondue method proposes a systematic
approach to addressing pervasive services in an MDA-com-
pliant manner, at different levels of abstraction, through in-
cremental refinement steps along middleware-specific con-
cern-dimensions. In this paper, we introduced the key ele-
ments that support the Enterprise Fondue method when
refining along the distribution concern-dimension, namely:
(1) the UML Profiles for Distribution (UML-D Profiles)
that address the distribution concern in an MDA-oriented
fashion at three different levels of abstraction (platform-in-
dependent level, abstract realization level, and concrete re-
alization level), (2) the model transformations that incre-
mentally refine existing design models (within the same or
between different MDA-levels) along distribution-related
concern-dimensions and in conformance to the proposed
UML profiles, and (3) the Parallax support for generating
code targeted at specific middleware infrastructures. The
CORBA technology was used to illustrate how the refine-
ment process is applied to a concrete example.

Please notice, however, that the Enterprise Fondue
method and the Parallax tool support are relatively young.
Both are undergoing refinement and improvement, but they
are already being applied. Besides the CORBA example
that was presented in this paper, refinement along the RMI

[6] technology-dimension and down to RMI code genera-
tion using Parallax did not raise any problems either.

Even though the UML-D Profiles are just a preliminary
step towards a final MDA-oriented UML profile for distri-
bution, they still have the merit of addressing distribution-
related concerns at different MDA-levels of abstraction. By
introducing the abstract distribution realization profile, and
by showing a concrete realization for the CORBA technol-
ogy, we set up the basis for future extensions and refine-
ments for different middleware technologies, such as Jini,
EJB/J2EE, .NET, or Web Services. It is only in this way that
limitations will appear leading to improvement.

Further investigations will be carried out to check
whether other middleware-specific concerns lend them-
selves to such an MDA-oriented profiling approach. Ad-
dressing concurrency (UML-C Profiles), transactions
(UML-T Profiles), security (UML-S Profiles), global time
(UML-GT Profiles), etc., will be intermediate steps towards
an MDA-Oriented UML Profile for Middleware Services,
or more precisely Middleware-Specific Concerns
(UML-MS Profiles).

References

[1] Object Management Group, Inc.: Model Driven Architec-
ture. http://www.omg.org/mda/, June 2004.

[2] Miller, J.; Mukerji, J.: Model Driven Architecture (MDA).
Object Management Group, Document ormsc/2001-07-01,
July 2001.

[3] Object Management Group, Inc., http://www.omg.org/,
June 2004.

[4] Object Management Group, Inc.: Common Object Request
Broker Architecture: Core Specification, v3.0.3, March
2004.

[5] Microsoft, Inc.: COM (Component Object Model), DCOM
(Distributed COM), COM+. http://www.mi-

crosoft.com/com/, June 2004.

[6] Sun Microsystems, Inc.: Java Remote Method Invocation
Specification. Revision 1.7, Java 2 SDK, Standard Edition,
v1.3.0, December 1999. http://ja-

va.sun.com/j2se/1.3/docs/guide/rmi/, June 2004.

[7] Object Management Group, Inc.: CORBA Components
Specification, v3.0, June 2002.

[8] Sun Microsystems, Inc.: Jini Network Technology. ht-

tp://www.sun.com/jini/, June 2004.

[9] Sun Microsystems, Inc.: Enterprise JavaBeans Specifica-
tion, v2.1, November 2003.

[10] Sun Microsystems, Inc.: Java 2 Platform, Enterprise Edi-
tion Specification, v1.4, November 2003.

[11] Microsoft, Inc.: .NET. http://www.mi-

crosoft.com/net/, June 2004.

[12] World Wide Web Consortium: Web Services. ht-

tp://www.w3.org/2002/ws/, June 2004.

Proceedings of the 8th IEEE Intl Enterprise Distributed Object Computing Conf (EDOC 2004)

1541-7719/04 $20.00 © 2004 IEEE

[13] Kleppe, A.; Warmer, J.; Bast, W.: MDA Explained. The
Model Driven Architecture: Practice and Promise. Addi-
son-Wesley, 2003.

[14] Frankel, D. S.: Model Driven Architecture: Applying MDA
to Enterprise Computing. John Wiley & Sons, 2003.

[15] Mellor, S. J.; Balcer, M. J.: Executable UML: A Foundation
for Model-Driven Architecture. Addison-Wesley, 2002.

[16] Bézivin, J.; Gérard, S.; Muller, P.-A.; Rioux, L.: MDA
Components: Challenges and Opportunities. International
Workshop on Metamodelling for MDA, Kings Manor,
York, England, November 24-25, 2003. ht-

tp://www.cs.york.ac.uk/metamodel4mda/index.ht-

ml.

[17] Frankel, D. S.: The MDA Marketing Message and the MDA
Reality. MDA Journal, a Business Process Trends Column,
March 2004. http://www.bptrends.com/.

[18] Object Management Group, Inc.: Unified Modeling Lan-
guage Specification, v1.5, March 2003.

[19] Object Management Group, Inc.: Unified Modeling Lan-
guage Superstructure Specification, v2.0, August 2003.

[20] Silaghi, R.; Strohmeier, A.: Integrating CBSE, SoC, MDA,
and AOP in a Software Development Method. Proceedings
of the 7th IEEE International Enterprise Distributed Object
Computing Conference, EDOC, Brisbane, Queensland,
Australia, September 16-19, 2003. IEEE Computer Society,
2003, pp. 136 – 146. Also available as Technical Report,
N° IC/2003/57, Swiss Federal Institute of Technology in
Lausanne, Switzerland, September 2003.

[21] Meyer, B.: Applying Design by Contract. IEEE Computer,
1992, pp. 40 – 51.

[22] Meyer, B.: Design by Contract. Prentice Hall, 2002.

[23] Fowler, M.: Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 1999.

[24] Object Management Group, Inc.: UML Profile for CORBA
Specification, v1.0, April 2002.

[25] Software Engineering Laboratory at the Swiss Federal In-
stitute of Technology in Lausanne: The Parallax Project.
http://parallax-lgl.epfl.ch/, June 2004.

[26] Warmer, J.; Kleppe, A.: The Object Constraint Language:
Precise Modeling with UML. Addison-Wesley, 1998.

[27] Object Management Group, Inc.: Software Process Engi-
neering Metamodel Specification (SPEM), v1.0, November
2002.

[28] Rational Software Corporation: UML Profile for EJB, JSR-
000026, Public Draft, May 2001.

[29] Object Management Group, Inc.: UML Profile for Enter-
prise Distributed Object Computing Specification, v1.0,
February 2002.

[30] Sendall, S.; Kozaczynski, W.: Model Transformation – the
Heart and Soul of Model-Driven Software Development.
IEEE Software, 20(5), Special Issue on Model-Driven De-
velopment, 2003, pp. 42 – 45. An extended version is
available as Technical Report, EPFL-IC-LGL N°
IC/2003/052, July 2003.

[31] Object Management Group, Inc.: MOF 2.0 Que-
ry/Views/Transformations RFP. ht-

tp://www.omg.org/cgi-bin/doc?ad/02-04-10, 2002.

[32] DSTC/IBM/CBOP: MOF 2.0 Query/Views/Transforma-
tions, Second Revised Submission, January 2004. ht-
tp://www.omg.org/cgi-bin/doc?ad/2004-01-06.

[33] Alcatel, Softeam, Thales, TNI-Valiosys, Codagen Technol-
ogies Corp: OpenQVT: MOF 2.0 Query/Views/Transfor-
mations, First Revised Submission, August 2003. ht-
tp://www.omg.org/cgi-bin/doc?ad/2003-08-05.

[34] Tata Consultancy Services: QVT-Partners: MOF 2.0 Que-
ry/Views/Transformations, First Revised Submission, Au-
gust 2003. http://www.omg.org/cgi-

bin/doc?ad/2003-08-08. http://qvtp.org/.

[35] Softeam, Inc.: UML Profile and the J Language: Totally
Control Your Application Development using UML. White-
paper, November 1999. http://www.objecteer-

ing.com/pdf/whitepapers/us/uml_profiles.pdf.

[36] Laboratoire d'Informatique Paris 6 (LIP6): MofFact QVT
Engine. http://modfact.lip6.fr/, June 2004.

[37] Java Community Process: Java Metadata Interface (JMI)
Specification, v1.0, June 2002. Java Specification Request,
JSR#040, http://java.sun.com/products/jmi/, June
2004.

[38] French National Institute for Research in Computer Science
and Control (INRIA): Model Transformation Language
(MTL). http://modelware.inria.fr/, June 2004.

[39] Object Management Group, Inc.: Naming Service Specifi-
cation, v1.2, September 2002.

[40] Object Management Group, Inc.: Trading Object Service
Specification, v1.0, May 2000.

[41] The Community OpenORB Project: OpenORB. ht-

tp://openorb.sourceforge.net/, June 2004.

[42] Object Management Group, Inc.: XML Metadata Inter-
change (XMI) Specification, v1.2, January 2002.

[43] Object Management Group, Inc.: XML Metadata Inter-
change (XMI) Specification, v2.0, May 2003.

[44] Object Management Group, Inc.: Meta Object Facility
(MOF) Specification, v1.4, April 2002.

[45] Eclipse Project: Eclipse. ht-

tp://www.eclipse.org/eclipse/, June 2004.

[46] Gamma, E.; Beck, K.: Contributing to Eclipse: Principles,
Patterns, and Plugins. Addison-Wesley, 2003.

Proceedings of the 8th IEEE Intl Enterprise Distributed Object Computing Conf (EDOC 2004)

1541-7719/04 $20.00 © 2004 IEEE

	footer1:

