
Graphical Concrete Syntax
rendering with SVG

Frédéric Fondement

ENSISA, MIPS
Université de Haute Alsace
12, rue des frères Lumière
F-68093 Mulhouse, France

frederic.fondement@uha.fr

Abstract. Model-based techniques place modeling at the cornerstone of soft-
ware development. Because of the large number of domains and levels of abstrac-
tion one can encounter in software systems, a large number of modeling languag-
es is necessary. Modeling languages need to be properly defined regarding con-
crete syntax in addition to abstract syntax and semantics. Most modeling
languages use a graphical concrete syntax, and solutions to model those syntaxes
appeared. If those solutions are convincing to support the rapid development of
graphical modeling tools, they are often restrictive in the range of possible con-
crete syntaxes for a given abstract syntax, and rely on dedicated technologies. In
previous works, we proposed such a solution based on a representation model
which was more flexible in that it abstracted away purely graphical concerns.
Those concerns include actual design for representation icons, how the design re-
acts to representation variations within the icons, possible interactions with an
icon, and synchronization between the graphical representation and the graphical
model. In this paper, we show how to solve those four last points using the SVG
open standard for vector graphics. We propose to define representation icons by
SVG templates complemented by layout constraints, a predefined and extensible
library of possible user interactions using DOM, and a specific approach based
on events to synchronize the graphical representation with the graphical model.
Thus, our solution solves the concrete realization of an modeling environment cu-
mulating advantages of a clear separation between abstract and concrete syntaxes
at the modeling level, while benefiting from the expertise of the vector graphics
community.

Keywords. MDE, MDA, Language Engineering, Graphical Concrete Syntax,
XML, SVG, DOM.

1 Introduction an related works

Model-based techniques to software-intensive system engineering, such as Model Driv-
en Engineering (MDE) [1], place models at the cornerstone of development activities.
In parallel, long held research showed advantages of Domain Specific Languages over
general purpose languages, provided those languages are properly supported and able
to interoperate [2]. Of course, this DSL approach also applies for modeling languages
- 1 / 16 -

mailto:frederic.fondement@uha.fr

[3]. As a consequence, because of the multiplicity of domains and levels of abstraction
implied even in a single software-intensive development project, there is a need for a
large number of well-supported modeling languages. Thus, much is to be awaited from
comprehensive and ergonomic techniques to modeling-language engineering.

A (modeling) language is properly defined by an abstract syntax, semantics, and a
set of concrete syntaxes [4]. Metamodeling is a convincing technique to capture the ab-
stract syntax of a language in which a model (so called a metamodel) states the vocab-
ulary and the taxonomy of a language. Thanks to these metamodels, automated tools
make possible to manipulate and exchange conforming models, such as MDR [5]. Cap-
turing semantics is still a research issue, even though solutions for support were already
proposed, for example in [6]. Concrete syntaxes may be either textual or graphical, but
are usually a mix of both. As an example, we proposed in [7] a domain specific lan-
guage as a mean to support textual editing and representation of models.

Solutions like GEF [8], Topcased [9] or MetaEdit [3] apply the same approach to
support graphical concrete syntaxes for modeling languages: a domain specific lan-
guage makes possible to describe how a modeling language is to be graphically repre-
sented. Automatic tools turn this specification into a complete graphical editing envi-
ronment. Approaches such as AToM3 [10] or Tiger [11] are similar, even though their
DSLs are given graphical (or hybrid) concrete syntaxes, and better apply lessons
learned in the visual language community (e.g. by permitting a precise definition of user
interactions). A problem with these approaches is that they restrict the range of possible
concrete syntaxes for a given metamodel since structure of abstract syntax constraints
structure of concrete syntax (with the notable exception of AToM3). They also need to
provide a specific language for graphical depicting of icons.

Another approach is to describe the mapping to a representation language, as ap-
plied in [12], by a bidirectional model transformation. A problem with this approach is
that model transformation languages are not as well suited as a DSL (as those presented
above) for expressing graphical concrete syntaxes.

A last kind of approach we presented in [13] makes use of a concrete syntax graph
which is synchronized with the abstract syntax graph (i.e. the model) while it is edited,
(following in this the philosophy of AToM3). Constraints are designed to prescribe the
synchronization schemes, leaving the possibility to let a (verifiable) model transforma-
tion or a constraint solver realizing the actual synchronization. An important advantage
is that abstract and concrete syntaxes are completely decoupled thus encouraging reus-
ability of concrete syntaxes and avoiding pollution of the abstract syntax by concrete
syntax concerns. Moreover, the approach follows the results of the visual language
community (the interested reader may refer to a synthesis in [14]) to modeling languag-
es. However, an important drawback is that the graphical description of icons is left un-
clear.

In this paper, extended from [15], we complement the latter approach by formally
defining icons, trying to reuse best practices in the field of vector graphics. We propose
to port to the metamodeling technological space the open standard Scalable Vector
Graphics (SVG) [16], for clearly defining icons involved in the concrete syntax of mod-
eling languages. An advantage is that the SVG standard can formally define 2D graph-
- 2 / 16 -

ics. Moreover, designers who use SVG to represent icons of a language do not need to
be (meta-)model specialists.

To specify a graphical concrete syntaxes, one has to state what are the icons of the
representable concepts of the abstract syntax, what are the variation points and their
synchronization with the model (e.g. an editable text to represent a name feature), and
how the icons react to variations. Moreover, in order for the specification to be turned
into a graphical editing environment, language engineers need to specify possible user
interactions, e.g. that an icon can freely be moved on the diagramming scene, or that a
path can be added an intermediate point.

Figure 1depicts the overall process. As said above, approach described in [13] spec-
ify the concrete syntax of a modeling language by formalizing the structure of the con-
crete syntax graph under the form of a metamodel 2. The concrete syntax graph 4 is
kept synchronized with the model 3 as specified with constraints. Moreover, additional
constraints fix the spatial relationship between representation icons. The approach pre-
sented in this paper complements the specification by realizing the graphical represen-
tation. Icons are described by SVG templates 5. Constraints have long proven their
ability to handle variability in graphical environments [17]. C-SVG [18] is an environ-
ment for supporting constraints in SVG that we propose as a mean to handle variability
within icons. SVG templates should thus be complemented with constraints that can be
expressed in the C-SVG language. Since SVG is an XML dialect, we propose an exten-
sible set of predefined user interactions using the DOM API [19] to manipulate XML
documents at runtime 6. We propose a lightweight mean for synchronizing represen-
tation with the concrete syntax graph based on events, in order to render variation
points. Finally, the modeling environment is an interactive SVG document 7 (the dia-
gram) dynamically showed in an SVG renderer.

The rest of the document is organized as follows. Section 2 presents an example for
a modeling language and its specification following the approach we presented in [13]
12. Sections 3, 4, and 5 detail the approach along with the same example by present-
ing icon definition (including reactions to variations) 5, user interactions 6, and rela-

Fig. 1. General Architecture

Metalanguage
(e.g. MOF, KerMeta)

Graphical
Syntax

(Metam odel)

Abstract
Syntax

(Metam odel)

«conform sTo»«conform sTo»

A2C
Adapter

Representation
Synchronization

C-SVG
Tem plates

Abstract
Syntax
Graph

(Model)

Concrete
Syntax
Graph

(Model)

«conform sTo»«conform sTo»

SVG
Docum ent

«applies»

DOM
Com ponents

RealizationSpecification
7

1 2

3 4

5

6

- 3 / 16 -

tion with the concrete syntax graph (further called the graphical model) 4, respectively.
Section 6 end the paper with concluding remarks.

2 Specifying Concrete Syntax for Statecharts

In this section, we detail an example for a modeling language. The abstract syntax of
the language is specified by a metamodel, and a graphical concrete syntax is specified
as presented in [13].

Statecharts are described in [20]. We show here a metamodel to state its abstract
syntax (see figure 1 1). For sake of simplicity and readability, we will restrict ourselves
to a simplified subset of these concepts, as shown by figure 2. State vertices might be
connected by transitions. A transition has exactly one source vertex and one target ver-
tex. A vertex is either a pseudo state (initial state, choice,...) or a state, which is in turn
either a composite state (i.e. containing other vertices and transitions), a simple state, or
a final state. Transitions are triggered by events. A state machine is given by its top
state.

The concepts of the statechart language can be represented by the symbols shown
in figure 4. There is no need to define the StateMachine symbol since a state ma-
chine cannot be represented. “event”, “name”, and “contents” parts of icons are varia-
tion points of the icons: the “event” text should be replaced (if necessary) by the name
of the event that triggers the transition, “name” text should be replaced by the name of
the represented state, and “content” text points the placeholder for sub-states of the rep-
resented composite state. The icons can be freely moved and resized in the diagram, ex-
cept icons for transitions that have to connect representations for the source and target
states of the transition.

Figure 3 shows an excerpt of the specification for the graphical concrete syntax of
the statechart language informally described above. The figure is separated in three
parts. The part in the left recalls the metamodel. The part in the right defines the graph-

ModelElement

name : String

StateMachine

StateVertex Transition

State

Composite
State

Simple
State

Event

Final
State

PseudoState

kind : PseudoStateKind
«enumeration»

PseudoStateKind

initial
choice
...

1

1

source

target

outgoing

incoming

*

*

subvertex

*

0..1

container

top 1

0..1trigger

*

Fig. 2. The Simplified Statechart Metamodel
- 4 / 16 -

ical elements as a metamodel (see figure 1 2) by decomposing the graphical icons in
different elements. Each graphical element extends the GraphicalElement ab-
stract class, which holds relations exposing spatial relationships. As an example, the
icon for CompositeState is decomposed into a text, a line, and a placeholder for
contained states. Possible variations in the elements of graphical objects state the pos-
sible variations in the icons (e.g. the value of the text attribute in SVGText). The
mapping between abstract syntax and graphical syntax is described using mapping
classes as shown in the middle part of figure 3. Those classes are connected to repre-

Transition SimpleState Composite
State FinalState PseudoState

(initial)
PseudoState

(choice)

Fig. 4. Symbols for the Statechart Concepts

Transition

Simple
State

TransitionDM

Simple
StateDM SVGSimpleState

SVGText

Abstract
Syntax Mapping Graphical

Syntax

1S
ta

te
S

ch
em

e

me vo

me vo

1 1

*

1

1
1

Tr
an

si
tio

n
S

ch
em

e dm

dm

SVGTransition

SVGArrowEnd

SVGArrowEnd

1
start

end
1

1
event

name

SVGText
text:String

Composite
State

SVGComposite
State

SVGText

SVGContents

1

C
om

po
si

te
S

ta
te

S
ch

em
e me vo

*
1

1
1

dm

name

contents
1

SVGLine
1

separator

...

Composite
StateDM

connected *
overlaps *

nearby *
GraphicalElement

visible : Boolean

contains

container

*
0..1

Fig. 3. Excerpt of the Statechart Graphical Concrete Syntax Specification

event name nam e

contents
- 5 / 16 -

sentable classes of the metamodel to graphical elements. Constraints, that can be written
in OCL [21], can make more precise synchronization (as exemplified in figure 5), and
fix spatial relationships between graphical elements (as exemplified in figure 6).

A major problem with that approach is that concrete representation of graphical el-
ements and its evolution (including information held by the GraphicalElement
class) is left unspecified. In the rest of the paper, we propose an approach to overcome
this impediment.

3 SVG Templates

In this section, we detail the process of defining SVG template icons of a graphical
modeling language, with the ability to react to variation.

Principle of the approach is the following: a diagram is an SVG document (see
figure 1 7) in which a system engineer may freely add new predefined SVG elements
as copied from SVG templates (see figure 1 5). Each one of these SVG templates cor-
responds to a main graphical element (see figure 3, right part) i.e. a graphical class that
has a connection to a mapping class. In the example of figure 3, main graphical ele-
ments are SVGTransition, SVGSimpleState, and SVGCompositeState.
Composed graphical elements should be described in the template of their topmost con-
tainer: in the example, a section of the SVG template for SVGSimpleState must de-
scribe the name part. Note that it is possible to synchronize the representation directly
with the model (see figure 1 3), but in this case, structure of the concrete syntax is
forced to follow structure of the abstract syntax.

When a system engineer decides to add a new element to his/her model, say a
SimpleState, a copy of the SVG template for SVGSimpleState is integrated into
the SVG document (see figure 1 7). In the meantime, an SVGSimpleState and an
SVGText graphical objects are created, and a relation between the template copy (i.e.

context TransitionDM inv:
 if self.me.trigger->isEmpty()
 then self.vo.event.text.size() = 0
 else self.vo.event.text = self.me.trigger.name
endif

Fig. 5. Synchronization Constraint: Text shown on Transitions is Name of Triggering Event

context CompositeStateDM
inv: self.me.subvertex->includesAll(

State.allInstances().dm
->select(sdm|self.vo.contains(sdm.vo)).me)

Fig. 6. Spatial Relationship Constraint: Containment of Composite States
- 6 / 16 -

the template instance) and the SVGSimpleState graphical object is maintained. Ac-
cording to specification described in section 2, the creation of an SVGSimpleState
graphical object should trigger the creation of a SimpleStateDM manager. Finally
an associated SimpleState object, together with a synchronization between the val-
ue of the name slot of the State object and the value of the text slot of the
SVGText graphical object should be created, as described in section 2. Relation be-
tween the template instance and the graphical object (in a model repository) will be fur-
ther discussed in section 5, while possible interactions with the template instances in the
diagramming scene will be described in section 4.

Figure 7 exemplifies this template-based approach. Main display classes, which are
emboldened on the figure, have a corresponding SVG template, and each one of con-
tained display classes has an SVG counterpart in the template. As an example, a start
section appears in the SVG template for SVGTransition, which corresponds to the
contained start SVGArrowEnd display object. Note that the SVG section for the end
display object is different, even though it corresponds to the same SVGArrowEnd dis-
play class. When the system engineer decides to place a new transition in the diagram
(i.e. the SVG scene), any $$ occurrence in the SVG template is replaced by an identifier
specific to the template instance in the SVG diagram so that the various SVG elements
in the scene can be identified as part of a specific template instance.

As explained before, template instances are subject to variations according to user
interactions. In the example of simple states, if name is changed, the containing rectan-
gle needs to grow accordingly. This means that template instances have some dynamic
behavior, and may need to be reorganized. Templates thus need to specify a layout
mechanism to state how an automatic reorganization may happen. Constraints have

SVGSimpleState

SVGText

...
1

Graphical Syntax

SVGTransition

SVGArrowEnd

SVGArrowEnd

1
start

end
1

0..1
event

name

SVGText
text:String

Fig. 7. SVG Templates for Statecharts

<svg>
<rect name="start_$$"

visibility="hidden" …/>
<polygon name="end_$$" …/>
<text name="event_$$" …/>
…

</svg>

<svg …>
<g …>

<rect …/>
<text name="name_$$" …/>
…

</g>
</svg>
- 7 / 16 -

long proven to be a comprehensive mean to specify such layout mechanism [17], and
we decided to rely on C-SVG [18] that is specialized in constraining SVG documents.
In the simple state template, the growing-name problem is solved as shown in figure 8.

First, a variable named w_$$ tracks an arithmetic expression in which the comput-
ed width of the name_$$ text plays a central role. A constraint, placed in the rectangle,
forces that rectangle to be as wide as the value of the w_$$ variable. Automatic tools
can place listeners in the SVG documents so that the C-SVG constraint keep satisfied.
If contents of name_$$ is changed, the computed value for w_$$ is updated, which
triggers a new computation for the rectangle’s width.

4 User Interactions

SVG documents are not primarily intended to interact, e.g. by mean of mouse or key-
board, as it is necessary for modeling a system. In this section, we show how to enable
user interactions in template instances.

The principle we propose is the following: SVG is an XML dialect, and an SVG
document is an XML tree. DOM is an API that programming languages such as Java
use to read and alter XML trees [19]. Thus, a program making use of the DOM API may
alter an SVG document. We will further call such kind of program a DOM component.
We chose an architecture in which user actions (e.g. mouse moved, mouse clicked, or
key hit) trigger execution of some DOM components, which may alter the SVG docu-
ment that represents the diagram scene. Those DOM components may behave differ-
ently depending on the context (e.g. what are the selected elements, what are the ele-
ments under the mouse). It is important for the SVG graphical renderer to dynamically
adapt the shown diagram to alterations of the SVG document, as it is the case for the
Apache Batik toolset [22].

The user interactions we propose may be compared to graph grammars to enable
user interactions. The difference is that they transform XML trees rather than graphs.
An advantage is that the SVG language (or more precisely the DOM interface) automat-
ically brings genericity so that an interaction only poorly rely on the transformed ele-
ments.

Possible user interactions with representation icons (or parts of them) are recurrent.
For instance, behaviors like move, connect, or resize, apply in a wide range of contexts,

<svg …> <g …>
<c:variable name="w_$$" value=

"c:max(c:width(c:bbox(id('name_$$'))) + 20, 150)" />
<rect …>

<c:constraint attributeName="width" value="$w_$$"/>
</rect>
<text id="name_$$" …>Simple State Name</text>

</g> </svg>

Fig. 8. SimpleState SVG Template: CSVG Constraint to Handle Text Growth
- 8 / 16 -

regardless they should impact the model (see figure 1 3) or not. An important point is
to have the possibility to choose exactly where those interactions are enabled. That is
why we developed a library of standard interactions independent from the context, for
them not to be implemented again and again depending on the SVG kind of element that
has to expose the behavior. We developed those interactions as parametrized DOM
components with the help of the DoPIdom framework [23]; as a consequence, the result
of those interactions can only alter the SVG document that represent the diagram. The
interactions are triggered by a controller that treats mouse and keyboard events. Param-
eters are stored in the SVG diagram. Note that some of these interactions are pure que-
ries and do not alter the diagram; these query interactions are intended to be used by
other interactions. We list below some of the interactions we implemented (the interest-
ed reader may find a more complete list in [24, 25]). Of course, if one needs an addi-
tional interaction, it is possible to make the list evolve thanks to DoPidom.
Interactions dedicated to position:

• Locatable: finds the coordinates of the holding node in the scene in terms of
position, width and height.

• BorderFindable: finds a list of points in the scene drawing the outline of the
holding SVG node.

Interactions dedicated to movement:
• Translatable: moves an SVG node according to given a vector.
• BorderSlidable: makes the holding SVG node affix to the outline of an SVG

element exposing the BorderFindable interaction, as can be found thanks to
an attachedComponent parameter.

• Resizeable: emphasizes the holding SVG node of a given factor.
Interactions dedicated to text editing:

• CharacterHitable: places a caret at a given index of a Text SVG node.
• CharacterInstertable and CharacterDeletable: inserts/removes a

given character at a given position of a Text SVG node.
Interactions dedicated to scene management:

• Selectable: places the holding SVG node as part of the selection of the scene.
Interactions dedicated to connection-based languages (see [14]):

• Link: such an SVG node will be holder for a connection and should not be ren-
dered in the scene. A Link interaction makes the connection between SVG nodes
participating in a connection by declaring what is the SVG node for the path (by
mean of a curvedLine parameter) and what are the elements represented at the
ends of the connection (by mean of start and end parameters).

• CurvedLine: such an SVG node may be placed as a connection for a link. They
overload a possible Selectable behavior by creating line handler in order to
change its route (i.e. its intermediate points). Original link is registered by mean
of a parentLink parameter.

• Arrow: such an SVG node can be placed at the start or the end of a link. A
position parameter states whether the SVG node is at the beginning or at the
end of the connection.
- 9 / 16 -

Interactions dedicated to containment:
• Container: such an SVG node is able to contain SVG nodes declaring the

Containable interaction. Contained elements are placed in a contents pa-
rameter. Interaction changes an eventual Translatable behavior by making
the contained nodes follow the same movement. This notion is independent from
the notion of SVG group.

• Contained: such an SVG node may be part of the contents of an SVG node de-
claring the Container interaction. Container is placed in a container pa-
rameter. Interaction changes the Translatable behavior by attaching or de-
taching the SVG node from its container according to its target position.

An example, shown in figure 9, is the template definition for SVGSimpleState.
In this code snippet, the first element is an SVG group that declares the Contained
and Translatable interactions. These declarations makes thus possible both to move
freely the representation for a simple state template instance as a whole, and to make it
containable by another SVG element declaring the Container interaction (as it
should be the case for the composite state template). The group contains a rectangle that
is responsible for being the outline of the state in that it declares the BorderFindable
interaction; as such, another SVG node declaring the BorderSlidable interaction
can be affixed to the rectangle (e.g. an end in the representation for a transition). The
group also contains a text that is the placeholder for the name of the state. That is why
this text must be editable and declares the CharacterHitable,
CharacterInsertable and CharacterDeletable interfaces.

5 Relationship with the model

Our choice to develop reusable behaviors, which only act on the SVG representation,
prevents from directly updating the information of the graphical elements (and of the
model as an indirect result). We show here how to complement SVG templates and pre-
defined events for the modeling information to be updated.

To do so, we propose to add listeners that can be declared on the SVG templates to
synchronize atomic information in the SVG document with atomic information in the
graphical model. We call atomic information a datum that is either a character string, a

<svg …>
 <g dpi:component="Translatable, Contained,…" …>
 <rect id="border_$$" dpi:component="BorderFindable,
…"…/>
 <text name="name" dpi:component="CharacterHitable,
CharacterInstertable, CharacterDeletable, …" …/>
 …
 </g>
</svg>

Fig. 9. SimpleState SVG Template: Declaring DOM Components
- 10 / 16 -

boolean, an integer or a real. This information may be processed in the document (e.g.
using a C-SVG constraint or an XSL transformation) to be properly represented.

Before realizing the synchronization, the relationship between the SVG representa-
tion and the graphical model needs to be established. The solution we propose is to
maintain variables in the SVG document for each SVG node that corresponds to a
graphical object. Those variables are to be filled at template instantiation time using an
action language. Moreover, actions may have to be performed in case the template in-
stance is removed from the scene. Variable declarations, initialization and removal ac-
tions can be specified in the SVG templates, as exemplified in figure 10.

In the figure, the SVG template for simple states is complemented by a creation ac-
tion written in the java language (using the JMI API [26]) where a variable model
plays the role of the model repository. In the action, two graphical objects (an
SVGSimpleState and an SVGText further referred to s and t, respectively) are in-
stantiated and associated as prescribed in figure 3. A deletion script states that the s ob-
ject should be deleted when suppressing the template instance (note that the t object
does not need to be suppressed explicitly because of the composition relationship be-
tween the SVGSimmpleState and SVGText elements). Moreover, new variable
XML nodes are added to the SVG template to handle the local dependencies of the rep-
resentation to the graphical model, as suggested by arrows in figure 7. At template in-
stantiation time, the action is executed, and the local variables are set to the references
resulting from the execution of the action. In the simple state example, those variables
are either initialized to s (for the group and the rectangle) or to t (for the text) as de-
clared by the values of the variable variable XML nodes. Note that an SVG node
may declare different variables.

Once the relationship between the SVG representation and the graphical model is
established, it is possible to synchronize atomic information between them. To do so,

<svg onCreation="{Java|
t = model.getSVGText().createSVTText();
s = model.getSVGSimpleState().createSVGSimpleState();
s.setName(t);}"

onDeletion="{Java|
s.refDelete();}" …>

<g id="$$" …>
<m:variable name="self" value="$s" />
<rect id="border_$$" …/>
…
<text id="name_$$" …>

<m:variable name="self" value="$t" />
newState</text>

</g>
</svg>

Fig. 10. SimpleState SVG Template: Variables
- 11 / 16 -

we introduce a new update XML node. The location XML attribute of the
update node states, with an XPath expression [27], where does the atomic informa-
tion to synchronize appears in the document. Two more XML attributes of the update
XML node state what are the graphical object and the slot to observe.

Figure 11 shows such a declaration of synchronization in the case of the simple
state template: the text slot of the SVGText graphical object t has to be rendered in
the (editable) text SVG node. To do so, we introduce a new variable displayed
which will be rendered by the text SVG node thanks to a tval C-SVG constraint.
An updater synchronizes the value of the display variable with the information in the
model. When the text is edited in the representation, the C-SVG constraint changes the
value of the display variable, which triggers propagation of the new text to the cor-
responding graphical object. When the text changes in the model, the updater is notified
and changes the value for the variable, which is then rendered according to the C-SVG
constraint.

The last information that has to be reflected both in the graphical objects and in the
SVG diagram is the information held by the GraphicalElement class, which are
the spatial relationships and the visibility. The information is automatically updated by
a double synchronization mechanism implemented by observers. On one hand, observ-
ers track actions performed by the interactions. On the other hand, other observers track
changes in graphical objects as stored in the isVisible, container,
contained, nearby, overlaps, and connected features. isVisible (as
found in the graphical object maintained by the self variable of the representation
node) is synchronized depending on the display SVG attribute. The other slots are
updated during the execution of interactions e.g. Container, Contained, or
BorderSlidable, i.e. any interaction able to change spatial relationship. Note that

Fig. 11. SimpleState SVG Template: Updater

<svg …>
<g id="$$" …>
<rect id="border_$$" …/>
…
<text id="name_$$" value="newState"

dpi:component="CharacterInstertable, …" …>
<m:variable name="self" value="$t" />
<m:variable name="displayed" value="newState" />
<c:tval
value="../variable[@name=’displayed’][1]/@value" />
<m:updater var_source="$t" slot="text"
location="../variable[@name=’displayed’][1]/@value"
 />

</text>
</g>
</svg>
- 12 / 16 -

all these interactions can be vetoed (in case a constraint fails at model level - see
section 2) or forced (in case the graphical model changes).

6 Conclusion

We proposed here a technique for concretely representing a model in a diagram, once
the abstract syntax (i.e. the metamodel) is known. We took advantage from the widely
accepted SVG standard to specify vector graphics. The approach is intended to be used
in conjunction with the approach presented in [13], which clearly separates modeling
data from graphical data, and which leads the concrete realization, following the exam-
ple of a component realizing its specification interfaces.

When combining those two approaches, the steps to specify a graphical concrete
syntax are thus the following:

1. create a mapping class for each model element of the metamodel that needs to be
represented,

2. create for each mapping class one or more graphical class and its different parts
reflecting the structure and the variability of the icon,

3. write the constraints on the mapping classes for abstract/concrete synchroniza-
tion, representation alternatives and inter-icons relationship (e.g. spatial relation-
ship),

4. write the SVG template for each root graphical class,
5. specify allowed interactions from a reusable and generic library acting on the

SVG representation,
6. complement the SVG templates with graphical constraints (e.g. using C-SVG) to

handle intra-relationships between the various SVG elements composing the tem-
plates,

7. create variables and initialization/deletion scripts to establish relation of the rep-
resentation to the graphical model,

8. declare updaters so that the representation and the graphical model keep synchro-
nized.

The approach we propose is certainly more verbose than other existing approaches (as
GMF or GME). However, it manages a broader range of graphical concrete syntaxes.
For example, the approach is not limited to connection-based languages thanks to its ex-
plicit management of spatial relationships. Moreover, we rely on one hand on metamod-
eling techniques (for the specification part) which is properly mastered by modeling
language engineers, and on the other hand on SVG which is properly mastered by
graphical designers. Finally, the modeling language engineer only needs a few knowl-
edge about SVG to place action scripts, variable and updaters in the SVG templates. As
such, if other approaches seem more adapted to prototype a graphical language, we be-
lieve that our approach is more adapted to realize the graphical concrete syntax of a
modeling language.

Compared to [15], we simplified the process of synchronizing the representation
with the graphical model. Indeed, in [15], interactions were explicitly sending events
that had to be answered by dedicated action scripts as parameters. Here, representation
- 13 / 16 -

and graphical model are more tightly coupled thus avoiding such mechanisms. More-
over, those event action scripts were over-specifying synchronization rules between the
model and the graphical model, thus dramatically limiting the interest of the graphical
model and the implied reusability.

One of the main drawback of our approach is that the specification of the synchro-
nization rules between the model and the graphical model is done using constraints.
Thus, one need either a constraint solver (which are usually slow) or an additional bidi-
rectional and incremental model transformation that realizes the constraints, which
needs to be proved. Moreover, there is redundancy of information between the model
and the graphical model. We plan to change this synchronization specification by mak-
ing the graphical model a view on the model, following the example of the concept of
view in databases.
A prototype implementation can be found in [28]. More insight about interactions is
given in [24] and about variables and action scripts in [25].

References

[1] Kent, S.: Model Driven Engineering. In Butler, M.J., Petre, L., Sere,
K., eds.: IFM. Volume 2335 of Lecture Notes in Computer Science.,
Springer (2002) 286–298

[2] Iivari, J.: Why Are Case Tools Not Used? Commun. ACM 39(10)
(1996) 94–103

[3] Pohjonen, R.: Boosting Embedded Systems Development with
Domain-Specific Modeling. RTC Magazine (April 2003) 57–61

[4] Harel, D., Rumpe, B.: Meaningful Modeling: What’s the Semantics
of "Semantics"? Computer 37(10) (2004) 64–72

[5] Sun Microsystems: Metadata repository (MDR) (December 2005)

[6] Scheidgen, M., Fischer, J.: Human comprehensible and machine pro-
cessable specifications of operational semantics. In Akehurst, D.H.,
Vogel, R., Paige, R.F., eds.: ECMDA-FA. Volume 4530 of Lecture
Notes in Computer Science., Springer (2007) 157–171

[7] Muller, P.A., Fleurey, F., Fondement, F., Hassenforder, M., Schneck-
enburger, R., Gérard, S., Jézéquel, J.M.: Model-Driven Analysis and
Synthesis of Concrete Syntax. In Nierstrasz, O., Whittle, J., Harel, D.,
Reggio, G., eds.: MoDELS. Volume 4199 of Lecture Notes in Com-
puter Science., Springer (2006) 98–110

[8] Eclipse Consortium: Eclipse Graphical Editing Framework (GEF)
http://www.eclipse.org/gef.
- 14 / 16 -

[9] Vernadat, F., Percebois, C., Farail, P., Vingerhoeds, R., Rossignol, A.,
Talpin, J.P., Chemouil, D.: The TOPCASED Project - A Toolkit in
OPen-source for Critical Applications and SystEm Development. In:
Data Systems In Aerospace (DASIA), Berlin, Germany, 22/05/2006-
25/05/2006, http://www.esa.int/publications, European Space
Agency (ESA Publications) (May 2006)

[10] Guerra, E., de Lara, J.: Event-driven grammars: relating abstract and
concrete levels of visual languages. Software and Systems Modeling,
special section on ICGT’04 6 (2007) 317–347

[11] Ehrig, K., Ermel, C., Hänsgen, S., Taentzer, G.: Generation of visual
editors as eclipse plug-ins. In Redmiles, D.F., Ellman, T., Zisman, A.,
eds.: ASE, ACM (2005) 134–143

[12] Clark, T., Evans, A., Sammut, P., Willans, J.: Applied Meta-model-
ling: A Foundation for Language-Driven Development (2005)

[13] Fondement, F., Baar, T.: Making Metamodels Aware of Concrete
Syntax. In: European Conference on Model Driven Architecture
(ECMDA). Volume 3748 of Lecture Notes in Computer Science.
(2005) 190 – 204

[14] Costagliola, G., Lucia, A.D., Orefice, S., Polese, G.: A Classification
Framework to Support the Design of Visual Languages. J. Vis. Lang.
Comput. 13(6) (2002) 573–600

[15] Fondement, F.: Concrete syntax definition for modeling languages.
PhD thesis, École Polytechnique Fédérale de Lausanne (EPFL)
(2007)

[16] Jackson, D., Northway, C.: Scalable Vector Graphics (SVG) Full 1.2
specification. World Wide Web Consortium, Working Draft WD-
SVG12-20050413 (April 2005)

[17] Borning, A., Marriott, K., Stuckey, P.J., Xiao, Y.: Solving Linear
Arithmetic Constraints for User Interface Applications. In: ACM
Symposium on User Interface Software and Technology. (1997)
87–96

[18] McCormack, C.L., Marriott, K., Meyer, B.: Constraint SVG. In:
WWW Alt. ’04: Proceedings of the 13th international World Wide
Web conference on Alternate track papers & posters, New York, NY,
USA, ACM Press (2004) 310–311

[19] Hors, A.L., Hégaret, P.L., Wood, L., Nicol, G., Robie, J., Champion,
M., Byrne, S.: Document Object Model (DOM) level 3 core specifi-
cation. World Wide Web Consortium (April 2004)
- 15 / 16 -

[20] Harel, D.: Statecharts: A Visual Formulation for Complex Systems.
Science of Computer Programming 8(3) (1987) 231–274

[21] Adaptive Ltd., Boldsoft, France Telecom, International Business
Machines Corporation, IONA Technologies, Object Management
Group: Object Constraint Language specification, v2.0. OMG Docu-
ment formal/06-05-01 (May 2006)

[22] Apache Foundation - XML Graphics Project: Batik SVG toolkit.
http://xmlgraphics.apache.org/batik/

[23] Beaudoux, O.: DoPIdom: une approche de l’interaction et de la col-
laboration centrée sur les documents. In: IHM ’06: Proceedings of the
18th international conference on Association Francophone d’Inter-
action Homme-Machine, New York, NY, USA, ACM Press (2006)
19–26

[24] Hong, F.: Provide behaviour to XML-SVG. Bachelor Semester Proj-
ect, École Polytechnique Fédérale de Lausanne (EPFL) (2005)

[25] Rohrer, F., Helg, F.: Synchronization between display objects and
representation templates in graphical language construction. Bache-
lor Semester Project, École Polytechnique Fédérale de Lausanne
(EPFL) (2006)

[26] Java Community Process: Java(TM) Metadata Interface API specifi-
cation 1.0 final release. JSR-000040 (June 2002)

[27] Clark, J., DeRose, S.: XML path language (XPath). World Wide Web
Consortium (November 1999)

[28] Fondement, F.: SVG-based modeling tools (2007) http://fonde-
ment.free.fr/lgl/projects/probxs/.
- 16 / 16 -

	Graphical Concrete Syntax rendering with SVG
	1 Introduction an related works
	2 Specifying Concrete Syntax for Statecharts
	3 SVG Templates
	4 User Interactions
	5 Relationship with the model
	6 Conclusion
	References

