
Making Metamodels Aware of
Concrete Syntax

Frédéric Fondement, Thomas Baar
Ecole Polytechnique Fédérale de Lausanne (EPFL)

ECMDA
Nuremberg, November 9, 2005

ECMDA, Nov 9, 2005 2

Outline

Motivation and Introduction
Modeling Language Definitions
Deficiencies of Informal Concrete Syntax Definitions
Visual Language Theory

Our Approach

Summary and Future Work

ECMDA, Nov 9, 2005 3

Modeling Language Definitions

Proliferation of Language Definitions
Trend in software engineering: Describe the
problem first by a tailored, domain-specific
language

Parts of a definition
Abstract syntax MOF metamodel
Concrete syntax often neglected
Semantics often avoided

All parts of a language definition should be given in standardized format!

ECMDA, Nov 9, 2005 4

Concrete Syntax Definition
The concrete syntax is defined in many cases only informally.

UML1.5, page:3-36, notation for Class:

UML1.5, page 3-81, notation for Composition:
Composition may be shown by a solid filled diamond as an association
end adornment.
Instead of using binary association paths using the composition
aggregation adornment, composition may be shown by graphical nesting
of the symbols of the elements for the parts within the symbol of the
element for the whole.

A class is drawn as a solid-outline rectangle with three compartments
separated by horizontal lines. The top name compartment holds the class
name and other general properties of the class (including stereotype); the
middle list compartment holds a list of attributes; the bottom list
compartment holds a list of operations.

ECMDA, Nov 9, 2005 5

Relationship Concrete-Abstract Syntax
AssociationEnd

aggregation:AggregationKind1 *Class

nam e:String Association
1 first
1 second

Company Division

Company

Division

c1:Class
name='Company'

ae2:AssociationEnd
aggregation=#none

a1:Association

c2:Class
name='Division'

ae1:AssociationEnd

aggregation=#composite

first second

?

ECMDA, Nov 9, 2005 6

Metamodel for Statecharts

ModelElement

name : String

StateMachine

StateVertex Transition

State

Composite
State

Simple
State

Event

Final
State

PseudoState

kind : PseudoStateKind
«enumeration»

PseudoStateKind

initial
choice
...

1

1

source

target

outgoing

incoming

*

*

subvertex

*

0..1

container

top 1

0..1trigger

*

ECMDA, Nov 9, 2005 7

Abstract/Concrete Syntax for Statecharts

closed

opened

lock unlock

close

unlocked

locked

open

unlocked

:StateMachine

:CompositeState

:Transition

:PseudoState

kind=initial

opened:SimpleState

closed:CompositeState

:Transition

:Transition

:PseudoState

kind=initial

locked:SimpleState

unlocked:SimpleState

:Transition

:Transition

top

source

target
target

source

source

target

source

target

subvertex

subvertex

subvertex

subvertex

source

target
subvertex

subvertex

Can we make concrete syntax definition as formal and precise that
one can decide automatically on the correctness of the graphical rendering?

ECMDA, Nov 9, 2005 8

Visual Language

A diagram (i.e. a visual language sentence) is given by
Set of visual elements (e.g. rectangles, lines, text)

visual elements can be seen as objects having attributes
such as shape, color, (position), attach region

Relationship between elements
connectedWith

connection-based language
spatial relationships (right, left, overlap, contain)

geometry-based language

It highly depends from the visual language we want to define
which of the attributes and relationships are relevant!

ECMDA, Nov 9, 2005 9

VL-Example – Border Diagram

Great Britain
Danmark

Austria

Poland

Czech

Switzerland

Ireland

Germany

France

Great Britain

Danmark

Austria

Poland

Czech

Switzerland

Ireland

Germany

France

Meaning: Connected countries have direct border

Border Diagram:
- Shows for each country its neighbors
- The only important information are the connecting lines, spatial information

do not play any role in this VL.

ECMDA, Nov 9, 2005 10

VL Example –Sequence Diagram

:Customer

:Bank

msg1

msg2

In Sequence Diagrams the spatial relationships between message
arrows are important because they indicate the ordering of sent messages.

ECMDA, Nov 9, 2005 11

Steps to Define Complete Syntax
Abstract Syntax

Metaclasses,
Metaassociations

Visual Language

Visual objects,
Attributes,
Relationships

Steps:
0) Define the abstract syntax
1) Define the visual language

- define relevant attributes and relationships
2) Define how instances of the metamodel are represented by sentences

of visual language

?

ECMDA, Nov 9, 2005 12

Define a Visual Language
Company

Division

Company

name:SVGText

attachRegion:SVGRectangle

comp:SVGRegion

Model of Visual Language:

SVGClass

SVGRectangle

SVGRegion

SVGText

text:String
SVGComposition

SVGArrowEnd

SVGArrowEnd

<<Interface>>
GraphicalObject

name

attachRegion

comp

1

1

1

start

end

1

1

<<Interface>>
GraphicalObject

<<Interface>>
GraphicalObject

overlap(GraphicalObject):Boolean
contain(GraphicalObject):Boolean

ECMDA, Nov 9, 2005 13

Connecting Abstract and Concrete Syntax

SVGClass

SVGRectangle

SVGRegion

SVGText

text:String

SVGAssociation

SVGArrowEnd

SVGArrowEnd

name

attachRegion

comp

1

1

1

start

end

1

1

Class

name:String

Association

AssociationEnd
aggregation:AggregationKind

1
*

ClassDM

AssociationDM

1 1

10..1

1

1

SVGAggregation

SVGComposition

vo

vodmme

dmme

1 1 secondfirst

Metamodel Display Manager Visual Language

ECMDA, Nov 9, 2005 14

Connecting Abstract and Concrete Syntax

-- the name of the class is the same as the text shown in the text field of the class
rectangle

context Class inv:
self.name=self.dm.vo.name.text

-- composition is shown either by adorned association or by nesting
context Association inv:

self.first.aggregation=#composition implies
(-- nesting of symbols
self.first.class.dm.vo.comp.contain(self.second.class.dm.vo) or
-- composite association
(self.dm.vo.isKindOf(SVGComposite) and
self.first.class.dm.vo.attachRegion.overlap(self.dm.vo.start) and
self.second.class.dm.vo.attachRegion.overlap(self.dm.vo.end)))

The precise description of the relationship between abstract and concrete
syntax is given declaratively in terms of OCL constraints.

Reflect ambiguous
informal description
(= can be used instead)

Using spatial
relationships

ECMDA, Nov 9, 2005 15

Summary

Framework to connect abstract and concrete
syntax

strict separation between abstract and concrete
syntax
visual language is represented by

relevant attributes of visual elements
relevant relationships between visual elements

Fully declarative description of connection of
abstract/concrete syntax

usage of OCL

ECMDA, Nov 9, 2005 16

Future work

Implementation of the framework
Generation of reference editors
Finding criteria for well-formedness of
abstract/concrete syntax mapping

Are all information of a given model (instance of
metamodel) represented in a non-ambiguous way?
Once the presentation options are fixed, is the
mapping from abstract to concrete syntax
injective?

	Making Metamodels Aware of Concrete Syntax�	
	Outline
	Modeling Language Definitions
	Concrete Syntax Definition
	Relationship Concrete-Abstract Syntax
	Metamodel for Statecharts
	Abstract/Concrete Syntax for Statecharts
	Visual Language
	VL-Example – Border Diagram
	VL Example –Sequence Diagram
	Steps to Define Complete Syntax
	Define a Visual Language
	Connecting Abstract and Concrete Syntax
	Connecting Abstract and Concrete Syntax
	Summary
	Future work

