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Abstract. Model transformations are the core of the MDA-approach to software
development. As specified by the OMG, model transformations should act on any
kind of model of any kind of metamodel, which implies the possible “reflective”
use of model transformations, i.e., model transformations acting on model trans-
formations. However, this would still require transformation developers to be fa-
miliar with the metamodel of the transformation language itself, which is not al-
ways the case. In order to overcome such a frustrating impediment for the MTL
language, inspired by AOP approaches, we have designed and implemented an
MTL weaver that modifies MTL transformations according to some weaving be-
havior, which is specified as special MTL transformations, called MTL-aspects,
using an AOP-like extension to the MTL language. Both the weaver and the lan-
guage extension are presented in this paper, and an example is used to show how
transformation developers can take advantage of the proposed language exten-
sion constructs in order to write “reflective” model transformations in MTL with-
out requiring any previous knowledge of the MTL metamodel itself.

Keywords. Model-Driven Architecture, MDA, Model Transformations, Aspect-
Oriented Programming, AOP.

1 Introduction
To escape from the proliferation of middleware infrastructures and to avoid drowning
in their implementation complexities, models are proposed as a far more accessible and
easier means for developers to build, extend, and evaluate applications than working di-
rectly at code level. The Model Driven Architecture (MDA) [1][2], an Object Manage-
ment Group (OMG) [3] initiative, promotes the separation of concerns between two
modeling dimensions: one focusing on the business functionality (resulting in Platform
Independent Models – PIMs), and another one focusing on the implementation of that
functionality on a specific middleware platform (resulting in Platform Specific
Models – PSMs). Since in the context of this paper we consider the middleware to be
our MDA platform, further on we will directly refer to the middleware instead of the
general concept of (MDA) platform.

Besides the obvious importance of PIMs and PSMs in MDA, model transforma-
tions are undoubtedly the key technology in the realization of the MDA vision. Among
other usages, model transformations are the ones responsible for refining PIMs into
PSMs (or abstracting PSMs into PIMs) and mapping PSMs to concrete middleware-
based implementations, providing thus an elegant approach to adapt PIMs to the pecu-
liarities of the new middleware infrastructures that do not cease to appear.



Unfortunately, there is not yet a standard language for defining model transforma-
tions. To fill this gap, OMG has issued a Request for Proposal called MOF 2.0 Query/
Views/Transformations RFP [4], which has been answered by eight different initial
submissions, five revised submissions, and finally two “joint” revised submissions.

A clear requirement in OMG's RFP was (and still is) that model transformations
should be able to act on any kind of model of any kind of metamodel. Since model trans-
formations are at the same time models compliant with the metamodel of the transfor-
mation language, model transformations should be able to transform other model trans-
formations independently of their metamodels. As a consequence, all currently existing
model transformation languages (to our knowledge) implement such a “reflective” be-
havior. However, the “reflective” use of model transformations is not trivial.

Typically, writing model transformations for driving the development process of
domain-specific applications requires the transformation developer to be familiar with
the metamodel of that specific domain and with the syntax of the model transformation
language used – and no more than that. As a consequence, many transformation devel-
opers are not at all familiar with the metamodel of the transformation language itself,
and thus they are not capable of writing “reflective” model transformations, i.e., model
transformations that transform already existing model transformations.

In order to overcome this frustrating impediment for the INRIA Model Transforma-
tion Language (MTL) [5], we present in this paper a solution inspired by Aspect-Ori-
ented Programming (AOP) [6] approaches. We have designed and implemented an
MTL weaver that modifies MTL transformations according to some weaving behavior
that is specified as a special kind of MTL transformations, called MTL-aspects. The
MTL transformation produced by the MTL weaver can be immediately used for refin-
ing application models.

As in the case of AspectJ [7][8], which is an aspect-oriented extension to Java, the
syntax defining the weaving behavior in MTL-aspects is a small AOP-like extension to
the MTL language itself. In this way, relying on a few high-level AOP-like but MTL-
based constructs for defining the weaving behavior, average MTL transformation de-
velopers should not have any problems using this MTL extension straightforwardly for
defining their “reflective” model transformations.

The rest of the paper is structured as follows: Section 2 provides the motivation of
this work by discussing concrete examples where such a weaving functionality is use-
ful; Section 3 gives a concise overview of the MTL model transformation language;
Section 4 introduces the MTL weaver, describes the AOP-like extension to MTL for de-
fining the weaving behavior in MTL-aspects, and presents an example showing both the
input and the output of a concrete weaving; Section 5 draws some conclusions and pre-
sents future work directions.

2 Motivation
In the context of our global research interests, we present in this section how currently
applied MTL transformations benefit from the weaving support provided by the MTL
weaver, promoting the separation of concerns paradigm even at level of model transfor-
mations.

Separation of concerns [9] and modularization are fundamental techniques of soft-
ware engineering. Decomposing software into smaller, more manageable and compre-



hensible parts, each of which encapsulating and addressing a particular area of interest,
called a concern, is a well-proven method towards developing applications that are easy
to configure, adapt, or extend according to changes in the requirements specification.

Middleware is an essential element in large distributed systems such as those that
support enterprise applications, requiring multiple heterogeneous components to inter-
operate. Moreover, middleware, like software in general, is subject to concerns. Several
concern-dimensions about middleware can be grouped into a category called Middle-
ware Services, as the middleware addresses specific concerns of a system, such as dis-
tribution, concurrency, security, or transactions. An extended list of categories that
group several middleware-specific concern-dimensions can be found in [10].

In order to address such middleware services in an MDA fashion and following the
separation of concerns principles, we defined the Enterprise Fondue software develop-
ment method [11]. In the context of Enterprise Fondue we defined several MDA-orient-
ed UML profiles that address middleware-specific concerns at different levels of ab-
straction. MTL transformations are used to incrementally refine existing design models
(within the same or between different MDA-levels) along middleware-specific con-
cern-dimensions and according to the UML profiles defined. A complete example of
applying the Enterprise Fondue method for addressing the distribution concern in the
concrete case of the CORBA [12] technology was presented in [13]. The UML-D Pro-
files proposed in [13] address the distribution concern at three different MDA-levels of
abstraction: platform-independent level (the DistributionProfile), abstract realiza-
tion level (the AbstractDistributionRealizationProfile), and concrete realiza-
tion level (the CORBADistributionRealizationProfile).

Based on the support provided by the MTL weaver, we refactored the MTL trans-
formation that refined application designs in the context of the Enterprise Fondue meth-
od along the distribution concern-dimension and according to the DistributionPro-
file. Out of one big model transformation that performed the entire refinement, we
have now one standard MTL transformation that performs the copy of an input model
to an output model, both models being compliant with the same UML metamodel, and
a very small MTL-aspect that defines the weaving behavior according to the Distri-
butionProfile that has to be applied. Both the MTL-Copy transformation and the
MTL1-D-Aspect are now fully separated as they should be, since they address totally
different concerns. Figure 1 a sketches the refinement process in the presence of the
MTL1-D-Aspect, or more general in the presence of MTL-aspects. Its name,
MTL1-D-Aspect, was chosen in accordance with the MTL1-D transformation defined in
[13] for refining along the distribution concern-dimension. The MTL-Distribution-
Copy transformation is the result produced by the weaver when modifying the MTL-
Copy transformation according to the weaving directives defined in the MTL1-D-As-
pect.

A more complex example is shown in Figure 1 b, where the metamodel of the input
and output models changes. In this example we move from a UML model to a Java
model ready to be mapped to concrete Java implementation. Considering as input the
output model of the previous refinement process, we refine this time along the RMI-
technology [14] and Java-language concern-dimensions as defined in the context of the
Enterprise Fondue method. While the MTL-UML2Java deals with transforming any
UML model to its correspondent Java model (relying on their respective metamodels),



the MTL22-D-Aspect addresses how distribution specific elements in the UML model
are transformed into their Java model counterparts when employing RMI as their im-
plementation technology. For instance, interfaces marked as «Distributed» in the
UML model will extend java.rmi.Remote in the Java model; similarly, the class of
the object marked as «Servant» will extend java.rmi.UnicastRemoteObject in the
Java model, and so on. Once again, the name, MTL22-D-Aspect, was chosen in accor-
dance with the MTL22-D transformation defined in [13] even though we considered this
time another technology, i.e., we have chosen RMI instead of CORBA. The MTL-RMI-
UML2Java transformation is the result produced by the weaver when modifying the
MTL-UML2Java transformation according to the weaving directives defined in the
MTL22-D-Aspect.

As can be seen in Figure 1, the support provided by the MTL weaver has enabled
us to modularize the different concerns in stand-alone units of encapsulation represent-
ed by MTL-aspects. In this way, we give transformation developers not only the possi-
bility, but also the means to rely on the well-proven power of separation of concerns
even at model transformation level. Moreover, the size of such MTL-aspects is very
much reduced, compared to their corresponding implementation in the initial MTL
transformations, since they rely on the MTL weaver which is now the one carrying all
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the burden of the weaving. The example presented in Figure 1 a is reconsidered further
on in section 4.2 where we discuss in more details its complete implementation.

Besides encapsulating middleware-specific concerns into MTL-aspects as present-
ed in this section, the number of possible usages of such MTL-aspects is unlimited since
the support provided by the MTL language enables us to implement almost anything in
the MTL weaver, and thus, the expressiveness power that could be provided to trans-
formation developers through the MTL extension syntax may be very broad, covering
all possible and impossible needs that developers may think of.

3 The Model Transformation Language (MTL)
This section provides a concise overview of the MTL transformation language focusing
mainly on the concepts that are relevant in the context of this paper. Readers that are
familiar with the MTL language may skip this section and jump directly to section 4
which presents the MTL weaver.

Many different solutions have been proposed for model transformation languages,
and therefore it is a hard task to merge all ideas into one future standard. Unfortunately,
standards of the future are not solutions to problems of today. The idea of the INRIA
Model Transformation Language (MTL) [5] is to provide all model transformation fa-
cilities, including the possibility to transform MTL transformations. This makes it pos-
sible for the future QVT language standard to be mapped to an MTL transformation by
means of an MTL transformation. This pivot approach has already been validated. The
MTL itself is developed according to a bootstrapped approach: a simple language,
called BasicMTL [15], provides the most important facilities, such as classes or at-
tributes, and new facilities are added by extending the abstract syntax and by making a
transformation from the extended to the initial syntax, always relying in this way on the
small “kernel” of BasicMTL. As an example, the associations between classes have
been added following such an approach. Moreover, the plan is to transform, or in other
words, to compile the Atlas Transformation Language [16] into an MTL transforma-
tion. As a conclusion, MTL aims more at motorizing model transformations than pro-
posing a new standard.

As suggested just before, MTL is an object-oriented imperative language for model
transformations. Therefore, MTL transformations are defined as programs in terms of
classes, methods, attributes, etc. In order not to confuse these MTL constructs with the
ones that the manipulated model may contain, we will further on refer to them as MTL
classes, MTL methods, MTL attributes, and so on. A special entry point, the main meth-
od, has to be defined for each MTL transformation. Pieces of MTL transformations are
organized in MTL libraries, each library being in addition responsible for holding mod-
els. Each such model can either be a collection of instances of MTL classes from an
MTL library, or a collection of model elements inside a repository.

MTL is a compiled language, Figure 2 presenting the compilation process. In order
to compile an MTL transformation T described in an mtl file, the first step is to parse
it. A parser ( ) reads the transformation as text and transforms it into an internal model
that is compliant with the abstract syntax of MTL [15]. In the next step, a type checker
( ) refines this model by adding information about types. For instance, in order to deal
with polymorphism, it is the type checker that will perform the analysis of MTL meth-



ods in order to reference, for each of them, other MTL methods that they are overriding.
If necessary, the types used by the transformation T might need to be referred from al-
ready compiled MTL libraries. For example, the MTL standard library, which defines
the MTL predefined types and operations, is typically used by all MTL transformations,
and thus, it participates in such library-usage dependencies. In order for the MTL trans-
formation T to be reused by other MTL transformations, its internal model, decorated
with type information, is stored in a binary file (T.tll). In the end, a code generation
step is performed ( ). Java source files that implement the behavior described by the
internal (refined) model of the MTL transformation T are generated, and they will make
use of the model repositories on which the implemented transformation was defined to
act. We used two * signs in Figure 2 in order to show that many precompiled libraries
(*.tll) may be needed, on one hand, and several Java source files (*.java) may be
generated, on the other hand, for one MTL transformation. If transformation T relies on
other libraries, the generated Java source files for T will require the Java source files re-
sulted from the compilation of those libraries.

The entire compilation process relies on the model of the MTL transformation T it-
self, which complies with the well-defined MTL metamodel. Therefore, steps , ,
and  can be viewed as special transformations acting on the MTL model of the trans-
formation T itself. Besides these three steps, it is at this MTL model level of the MTL
transformations that new special transformations may be defined in order to change the
very behavior of those MTL transformations. Following this idea, our MTL weaver is
indeed implemented as such a special transformation, acting on the MTL models of the
MTL transformations and transforming them according to the weaving behavior de-
fined in MTL-aspects, as we will see in section 4.

4 The MTL Weaver
Reusability has always been an important concern in the software development industry
due to its potential to reduce the cost of software development. During the last decade,
different levels of reuse have been proliferated, such as functions, procedures, classes,
components, aspects, or even entire models. But how can we achieve the reuse of model
transformations? How to adapt existing model transformations that already accomplish
most of our needs?
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The reuse of MTL transformations is currently promoted at the level of MTL librar-
ies, which are some kind of light model transformation components. In this section, we
present some implementation details and the provided facilities of an aspect-oriented
support that allows transformation developers to reuse existing MTL transformations
and to easily adapt them in order to address new needs, or concerns, that the application
under development has to incorporate. The main concepts of the MTL weaver are in-
troduced along with the AOP-like extension to MTL for defining the weaving behavior
in MTL-aspects. We also present an example showing both the input and the output of
a concrete weaving.

The standard MTL language already provides support for transformation develop-
ers to define MTL transformations that transform other MTL transformations. Howev-
er, writing such “reflective” MTL transformations still requires transformation devel-
opers to be familiar with the metamodel of the MTL language itself, a requirement that
significantly reduces the number of such developers. In order to overcome this imped-
iment for the MTL language, we propose a solution inspired by AOP approaches. We
have designed and implemented an MTL weaver that modifies MTL transformations
according to some weaving behavior that is specified in terms of weaving directives
modularized in special stand-alone MTL transformation encapsulation units, called
MTL-aspects. As in the case of AspectJ, which is an aspect-oriented extension to Java,
the syntax defining the weaving behavior in MTL-aspects is a small AOP-like extension
to the MTL language itself. In this way, relying on a few high-level AOP-like but MTL-
based constructs for defining the weaving behavior, average MTL transformation de-
velopers should not have any problems using this MTL extension straightforwardly for
defining their “reflective” model transformations.

The place of the MTL weaver in the MTL compilation process and the evolution of
the MTL weaving process are presented in Figure 3, where the MTL transformation T
is refined according to the weaving directives defined in the MTL-aspect A. The weav-
ing process is very similar to the compilation process presented in Figure 2. First, both
T and A are parsed ( ) in order to transform the two text files into internal MTL models
compliant with the MTL metamodel. The important change comes next, when the MTL
Weaver ( ) reads the two internal models of T and A, and produces a new model in-
stance (of the MTL metamodel) for the new MTL transformation T+A, which represents
the result of modifying T according to the weaving directives defined in A. Even though
it is not explicitly shown in Figure 3, the MTL weaver itself is implemented as an MTL
transformation as well. Once this weaving step is finished, the normal compilation pro-
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cess can continue with the type checking step ( ), which produces a reusable precom-
piled MTL library, and the code generation step ( ), which produces Java source files.
Please notice that the weaving process results in a completely new MTL transformation,
without making any changes to the original MTL transformation T. In this way, both
transformations can independently be reused later on in order to transform application
models. Moreover, the MTL-aspect A may be reused as well for refining other MTL
transformations according to the same weaving directives.

4.1 MTL-Based Syntax for Describing the Weaving Behavior
There are two major requirements that an MTL-aspect must fulfill. First, it must clearly
identify where the modifications have to be performed, and second, it must clearly de-
fine what are those modifications. In AOP terminology, a join point is a well-defined
point in the execution of a program where additional functionality may be “injected”.
To identify such points in our weaving process, a pattern matching mechanism is used
with respect to the names of the MTL libraries, MTL classes, MTL methods, etc. Both
requirements can be expressed using the MTL syntax as well, relying on small exten-
sions that are detailed in this section.

One of the extension mechanisms proposed by the MTL language is the tagging fa-
cility. Tags are key/value pairs associated either with an MTL library, an MTL class, or
an MTL method. Since tags are part of the MTL metamodel, once they are analyzed by
the MTL parser, they populate the internal MTL model representing the MTL transfor-
mation. This makes it possible for the MTL weaver presented in Figure 3  to access
these tags and to use them for very different purposes. Since MTL-aspects only rely on
the tag extension mechanism to define additional weaving directives, it is possible to
use the same parser for reading both MTL-aspects and MTL transformations, as shown
in Figure 3 .

In order to give an example of an MTL-aspect that could play the role of A in
Figure 3, we show in Figure 4 some snippets of the MTL1-D-Aspect. For the sake of
readability, we will further on refer to as input library the MTL library taken as input
for the weaving process, i.e., the library that plays the role of T in Figure 3, and its ele-
ments input classes, input methods, etc. The MTL library produced as a result of the
weaving process, T+A in Figure 3, will further on be referred to as output library, and
its elements output classes, output methods, etc.

Each line in Figure 4 may be considered as a weaving directive for the MTL weav-
er. For instance, the first line defines the name of the input library that the MTL1-D-As-
pect will have to be weaved in, i.e., Copy. In order not to alter the Copy input library
during the weaving process and to avoid name clashes between input and output librar-
ies, the name of the output library has to be provided. This can be achieved by defining
a tag on the MTL library of the MTL-aspect. We have named this tag rename, and its
value represents the name of the MTL library produced as a result of the weaving pro-
cess, e.g., Distribution in this particular case.

By default, elements of the input library will be simply reproduced in the output li-
brary. However, this simple reproduction can be tuned by the rest of the MTL-aspect.
For instance, in Figure 4 , the MTL class Copier is defined. This weaving directive
indicates to the MTL weaver that if a class with the same name exists in the input li-
brary, then the reproduced class in the output library contains both the members in the



input class and the ones defined in the MTL-aspect class. This process is called class
merge. On the other hand, if this class does not exist in the input library, then it will sim-
ply be added to the output library exactly as it is defined in the MTL-aspect, i.e., it will
include all member definitions defined by the MTL-aspect, e.g., the servantIter-
faceName MTL attribute and the initDI MTL method.

A conflict may appear during a class merge if some members in the matching input
classes and in the MTL-aspect class have the same name. If the member in the MTL-as-
pect is an attribute, it will be added as it is, without worrying whether the name of the
attribute already exists in the input MTL library, since the rest of the compilation pro-
cess will detect such a duplicate attribute, if any, and an error will be thrown. For meth-
ods, the detected conflict is registered to be solved later.

MTL-aspect developers may refer many MTL classes or MTL methods in a single
pattern by relying on “wildcard” facilities, such as “_”, which matches any name, or the
more sophisticated regular expressions delimited by curly brackets. For instance, in
Figure 4 , the class named {Copier$}, matches all input classes whose name ends
(denoted by $) with “Copier”, and its method {^getTarget(.*)} matches all input
methods, defined on the matched input classes, whose name starts (denoted by ^) with
“getTarget”. As a rule, MTL-aspect developers should not abuse of such constructs in
order to add new classes or methods to the output library.

The class merge process, as it is implemented in the MTL weaver, is shown in
Figure 5. The libClass represents the input class, and the behaviorClass represents
the MTL-aspect class. Please note that the name of the behaviorClass matches the
name of the libClass as a precondition for the mergeClass method.

A method conflict may be solved according to some predefined rules. We have
identified three kinds of possible rules that prescribe the MTL weaver how to manage
the instructions defined by the conflicting method of the MTL-aspect:

• run MTL-aspect instructions at the very beginning of the output method,
• run MTL-aspect instructions just before returning from the output method, or
• replace input instructions with MTL-aspect instructions in the output method.

library Copy;
tag rename := specialtag [Distribution];

class Copier {
  servantIterfaceName : Standard::String;

  initDI(sin : Standard::String) : Copier {
    self.servantIterfaceName := sin;
    return self;
  }
}

class [{Copier$}] {
  [{^getTarget(.*)}](theSource : Standard::ModelElement)
  tag merge := specialtag [Append];
  tag refactorParameters := booleantag true; {
    theSource.toOut();
  }
}

Fig. 4. Snippets of the MTL1-D-Aspect



It is the responsibility of the MTL-aspect developer to indicate which alternative s/he
desires to be chosen for a given method conflict. For this purpose, we defined the merge
tag that has to be added on each conflicting method in the MTL-aspect. The three pos-
sible values corresponding to the previously described rules are Prepend, Append, and
Replace respectively. If a conflict cannot be solved, the weaving process ends in fail-
ure.

The instructions in the MTL-aspect method may need to refer to some parameters
of the matched input methods. The presence of the boolean tag refactorParameters
set to true makes the parameters of the input methods accessible inside the MTL-as-
pect according to the names provided in the MTL-aspect method. Moreover, this tag
makes the method matching take care of the number of parameters in the input methods
rather than just matching the names of the methods.

As an example, Figure 4  states that for all input methods whose names start with
“getTarget” inside classes whose names end with “Copier”, the first parameter, named
in the MTL-aspect theSource, must be sent to the console by means of the MTL pre-
defined operation toOut. This output must be performed before returning from the
modified MTL methods, as stated by the value Append of the merge tag defined for the
MTL-aspect method.

As a summary, the list of possible tags that may appear in the definition of an
MTL-aspect is provided in Table 1. The first column gives the name of the tag as it must
appear in the MTL-aspect. The second column indicates on which MTL element this
tag may be defined. The third column indicates whether the presence of the tag is man-
datory or optional; default values are indicated for optional tags. The fourth column
gives a brief description of the semantics of the possible associated values.

Fig. 5. MTL Weaver Snippets for Class Merge (mergeClass)

mergeClass(libClass : BasicMtlASTView::UserClass;
           behaviorClass : BasicMtlASTView::UserClass) {
  lo : Standard::Set;
  // adding attributes
  if (isNull(behaviorClass.definedAttributes).not()) {
    foreach (at : BasicMtlASTView::Attribute)in (behaviorClass.definedAttributes) {
      libClass.appendDefinedAttributes(at);
    }
  }
  // merging operations
  foreach (bo : BasicMtlASTView::Operation) in (behaviorClass.definedMethods) {
    lo := matchingOperations(libClass, bo);
    if (lo.size().[=](0)) { // to be added
      if (self.canAdd(bo)) {
        libClass.appendDefinedMethods(bo);
      } else {
        bo.name.concat(' seems to be a pattern; no correspondance found.').toOut();
       'ignoring addition to class '.concat(libClass.name).toOut();
      }
    } else { // conflict, to be treated later
      self.operationConflicts := operationConflicts.including(
                             new OperationConflict().init(libClass, lo, bo));
    }
  }
}



As we showed on some concrete examples, the MTL-aspect developer does not
need to have a deep knowledge of the MTL metamodel and its semantics in order to
transform an MTL transformation. All s/he needs to know is the MTL syntax and some
predefined tags. Moreover, with the current implementation of the MTL weaver, an
MTL-aspect is about 10 times smaller (in lines of code) and about 50 times faster to de-
velop than a standard MTL transformation that would achieve the same weaving behav-
ior on another MTL transformation.

Please notice, however, that the MTL weaver and the aspect-oriented support pro-
vided are relatively young, still undergoing refinement and improvement as we move
along. New constructs will be added in order to address MTL-aspect developer needs
and to facilitate as much as possible the development of “reflective” MTL transforma-
tions. For instance, it would be very helpful to have a pattern matching for instructions
or expressions, e.g., matching all calls to a given method. The pattern we adopted for
extending the MTL language with AOP-like constructs will remain nevertheless the
same, i.e., extending the language by providing new tags that change the semantics of
their base element, just like UML profiles extend the UML.

4.2 Running Example
In this part, we consider the weaving of the MTL1-D-Aspect in the simple MTL Copy
transformation in order to modify its behavior and make a system distributed by apply-
ing the stereotypes defined in the DistributionProfile [13] according to some con-
figuration information. Since the goal is to illustrate the most important principles of the
weaving process, we focus on very small parts of the example.

The input MTL Copy transformation is specialized in copying an input UML 1.4
model to an output UML 1.4 model. Snippets of the transformation are presented in
Figure 6. The transformation is located in the MTL library Copy, having two variables,
in and out, for referring to the input, and output models respectively. One of the MTL

Table 1. Predefined MTL-Aspect Tags

Tag Name
Base 
MTL 

Element
Presence Description

rename Library mandatory The name of the output library.

merge Method mandatory if 
conflict

Prepend to add instructions at the very 
beginning of the method.
Append to add instructions just before 
returning from the method.
Replace to replace initial instructions 
with MTL-aspect instructions.

refactorPa-
rameters

Method optional; 
default value 
is false

Indicates if the number of parameters 
has to be considered in the pattern 
matching, and if parameters have to be 
intercepted for further use inside 
MTL-aspect instructions.



classes of this library is Copier, which defines the getTarget method. This method
takes as parameter a UML element srcElt from the in model, and retrieves and returns
the corresponding UML element inside the out model. Another MTL class, extending
Copier, is UML14CreatorCopier, which defines the getTargetClass method. This
method takes a UML class src in the in model as parameter, and is responsible for cre-
ating and returning a UML class in the out model.

We present now two of the modifications that have to be performed in order for the
MTL Copy transformation to make a system distributed. The first one is to make an in-
terface remotely available, but before doing this we still need to identify the right inter-
face. The solution we considered is to add an attribute, servantIterfaceName, to the
MTL Copier class as a placeholder for the name of the interface to be distributed. This
attribute is transmitted to the MTL Copier class by means of the new method initDI
defined in the MTL1-D-Aspect. The second modification is to display on the console
UML elements from the in model for which a correspondence in the out model has
been requested. A thorough analysis of the complete MTL Copy transformation would
clarify that such correspondences are only requested when invoking methods whose
names start with “getTarget”, and which belong to a class whose name ends with “Copi-
er”. These modifications are prescribed in the MTL1-D-Aspect that was partly present-
ed in Figure 4, where part  corresponded to the first modification, and part  to the
second one.

The result of weaving the MTL1-D-Aspect in the MTL Copy transformation is
shown in Figure 7. Even though we have clearly stated in section 4 that the results of
the MTL weaving process are just MTL binaries and Java source files, Figure 7 repre-
sents what a pretty printer would produce for the MTL binary. Changes introduced by
the MTL-aspect are highlighted by change bars. Since the output MTL library is differ-
ent from the original MTL Copy library, a renaming has occurred according to the re-
name tag that was specified on the library definition inside the MTL1-D-Aspect, as
shown in Figure 4.

Part  of the MTL1-D-Aspect in Figure 4 states that an MTL class named Copier
must appear with a servantIterfaceName attribute and an initDI operation in the

library Copy;
model in  : RepositoryModel;    // should be a UML1.4 MetaModel
model out : RepositoryModel;    // should be a UML1.4 MetaModel
class Copier {
  getTarget(srcElt : in::Core::Element) : out::Core::Element {
    r : out::Core::Element;
    ... // compute r
    return r;
  }
}
class UML14CreatorCopier extends Copier {
  getTargetClass(src : in::Core::Class) : out::Core::Class {
    r : out::Core::Class;
    r := new out::Core::Class();
    trace(src, r);
    return r;
  }
}

Fig. 6. Snippets of the Copy Input Library



output library. Even though such an MTL Copier class already exists in the input li-
brary, no name conflicts have been found, and therefore member definitions from both
the MTL-aspect and the input class are directly added to the MTL Copier output class,
as shown by Figure 7 .

The MTL-aspect method defined in part  of the MTL1-D-Aspect in Figure 4
matches the input methods Copier::getTarget and UML14CreatorCopier::get-
TargetClass. Please note that the presence of the refactorParameters tag set to
true in the MTL-aspect has made the method matching check that only one parameter
is defined for these input methods, parameter that will further on be used as the variable
theSource inside the body of the MTL-aspect method. The tag merge set to Append
defined on the MTL-aspect method indicates how possible conflicts should be solved.
Since conflicts have indeed been found, the instructions defined in the MTL-aspect
have to be inserted in the output class just before returning from the corresponding re-
productions of the input methods in the output class, as part of the output library. To
achieve this, we rely on the MTL try-catch-finally statement: instructions of the
input method are reproduced in the try part, and instructions from the MTL-aspect
method are reproduced in the finally part, as shown in Figure 7 . In this way, we
enforce that instructions from the MTL-aspect method are executed just before return-

library Distribution;
model in  : RepositoryModel;    // should be a UML1.4 MetaModel
model out : RepositoryModel;    // should be a UML1.4 MetaModel
class Copier {
  servantIterfaceName : Standard::String;
  initDI(sin : Standard::String) : Copier {
    self.servantIterfaceName := sin;
    return self;
  }
  getTarget(srcElt : in::Core::Element) : out::Core::Element {
    r : out::Core::Element;
    theSource : Standard::ModelElement;
    theSource := srcElt;  // [*]
    try {
      ... // compute r
      return r;
    } finally {
      theSource.toOut();  // [*]
    }
  }
}
class UML14CreatorCopier extends Copier {
  getTargetClass(src : in::Core::Class) : out::Core::Class {
    theSource : Standard::ModelElement;
    theSource := src;     // [*]
    try {
      r : out::Core::Class;
      r := new out::Core::Class();
      trace(src, r);
      return r;
    } finally {
      theSource.toOut();  // [*]
    }
  }
}

Fig. 7. Snippets of the Distribution Output Library



ing from the output method, wherever an MTL return instruction may appear in the
input method. The true value for the refactorParameters tag also instructs the MTL
weaver to produce new variables in the output methods according to the parameters de-
fined in the MTL-aspect method that are supposed to match parameters from the input
methods. These new variables represent placeholders for the values of the parameters
of the input methods that were intercepted by the corresponding MTL-aspect method.
Applying this rule for the two input methods matching the MTL-aspect method {^get-
Target(.*)}, new theSource variables will be added in the corresponding output
methods for storing the very input parameters that were previously matched (see
Figure 7 [*]).

5 Conclusions and Future Work
All model transformation languages that we know of provide transformation developers
the facility to define “reflective” model transformations, i.e., model transformations
that transform other model transformations. However, writing such model transforma-
tions is generally beyond the ability of many transformation developers since it requires
the developer to be familiar with the metamodel of the transformation language itself.
In order to overcome this frustrating impediment for the INRIA MTL transformation
language, we presented in this paper an MTL weaver that modifies MTL transforma-
tions according to some weaving behavior that is specified as a special kind of MTL
transformations, called MTL-aspects. Inspired from the AOP world in general, and from
AspectJ in particular, the syntax defining the weaving behavior in MTL-aspects is a
small AOP-like extension to the concrete syntax of the MTL language itself. In this
way, relying on a few high-level AOP-like but MTL-based constructs for defining the
weaving behavior, average MTL transformation developers should not have any prob-
lems using this MTL extension straightforwardly in order to define their “reflective”
model transformations.

The support provided by the MTL weaver through the MTL extension syntax was
illustrated on a concrete example, namely modularizing the distribution concern in
stand-alone units of encapsulation represented by MTL-aspects. We have shown in this
way that transformation developers are given not only the possibility, but also the
means to rely on the well-proven power of separation of concerns even at model trans-
formation level.

Even though this entire research was carried out on the INRIA MTL transformation
language, most of the concepts presented in this paper are MTL independent and could
easily be applied at the future QVT specification level by providing higher level con-
structs for specifying the weaving behavior. For example, we can very well imagine the
MTL1-D-Aspect be written at the QVT specification level, and then automatically re-
fine it for the MTL language when applying it in the context of MTL-based projects.
Although the constructs introduced in this paper are very suitable for imperative model
transformation languages (e.g., “before method return” or “after call”), we be-
lieve that similar counterparts may be identified in declarative model transformation
languages as well (e.g., “after rule match”), and thus a common ground could be
found at the QVT specification level.
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