
Innovations in Systems and Software Engineering manuscript No.
(will be inserted by the editor)

Development of an automated MBT toolchain from
UML/SysML models

Jonathan Lasalle · Fabien Peureux · Frédéric Fondement

Received: date / Accepted: date

Abstract This paper reports about the VETESS pro-

ject results and experience with building a Model-Based

Testing toolchain to validate automotive embedded sys-

tems. This approach, based on existing test generation

and test execution tools, makes it possible to auto-

matically derive and execute functional test cases from

UML or SysML models. This process is composed of the

following steps: modeling (UML or SysML functional

view), abstract test case generation (symbolic execution

of the model), concretization (generation of executable

test scripts from abstract test cases) and analysis (assi-

gnation of the test verdict). This process is automated

by a toolchain based on Topcased modeler, Smartesting

test generator and Clemessy TestInView. This deve-

loped prototype made it possible to demonstrate that

Model-Based Testing from UML/SysML models is an
efficient way to automate testing process for systems

mixing software and hardware parts.

Keywords Model-Based Testing · Automated testing

process · UML/SysML notations · Embedded systems

J. Lasalle · F. Peureux
LIFC - Université de Franche-Comté,
16 route de Gray, 25030 Besançon, France
Tel.: +33 (0)3 81 66 66 63
E-mail: {jlasalle,peureux}@lifc.univ-fcomte.fr

F. Peureux
Smartesting R&D center,
18 rue Alain Savary, 25000 Besançon, France
Tel.: +33 (0)3 81 80 47 62
E-mail: fabien.peureux@smartesting.com

F. Fondement
MIPS - Université de Haute-Alsace,
12 rue des Frères Lumière, 68093 Mulhouse, France
Tel.: +33 (0)3 89 33 69 78
E-mail: frederic.fondement@uha.fr

1 Introduction

Model-Based Testing approach (MBT) aims to derive

test cases from the specification of the System Under

Test (SUT) [16]. The generic process of MBT is de-

picted on the figure 1. The first step of this approach

consists to specify a model that captures the functional

behavior of the SUT. From this specification, an (semi-

)automatic tool generates test cases, which can be seen

as an abstract execution trace of the system. These test

cases are abstract because they are defined at the same

abstraction level than the model of the SUT. After-

wards, a concretization step makes it possible to pro-

duce, from the abstract test cases, test scripts that can

be directly executed either on a simulation platform of

the system, or directly on the concrete system to be

tested. The automation of such test generation process

is a strategic issue, since it can replace the (so current)

manual development of test cases, which is known as

costly and error-prone [20,4].

Fig. 1 Model-Based Testing process.



2 Jonathan Lasalle et al.

This paper reports about the results and our ex-

perience with building an MBT toolchain prototype

using UML or SysML notation to describe the SUT.

This prototype, based on the existing MBT solution

provided by the company Smartesting, is intended to

demonstrate the proof-of-concept that MBT process can

increase testing process automation within automotive

embedded system domain. More precisely, it aims to

show that MBT approach from UML (and SysML) no-

tation is a relevant way to test hybrid architecture (sys-

tems mixing software and hardware aspects). This work

was supported by the project VETESS (from Septem-

ber 2008 to August 2010) and labelled by the French

competitiveness cluster “automotive of future”1.

This project has rallied the three companies Smartes-

ting2 (MBT software editor), Clemessy3 (testing bench

provider) and PSA4 (car manufacturer), and the two

academic laboratories MIPS5 (Model Driven Engineer-

ing expertise) and LIFC6 (MBT expertise).

The remainder of this paper is organized as fol-

lows. Section 2 gives an overview of the toolchain de-

veloped within the project VETESS to support MBT

approach. Section 3 describes the proposed process and

the toolchain component developed to achieve it. Sec-

tion 4 reports our experience about software engineer-

ing approach and experimentation feedback. Finally,

Section 5 gives conclusions and outlines future work.

2 MBT toolchain overview

The goal of the project VETESS was to develop a tool-

chain based on the Smartesting MBT process, and to

adapt it to address specific testing needs and require-

ments within the automotive domain. To achieve this

goal, this project has focused both on MBT theoretical

aspects and technical issues.

The theoretical aspects deal with the capability of the

toolchain to take, as input models, representation of

automotive embedded system, and the capacity to gen-

erate relevant test cases within mecatronic embedded

systems. These objectives have been reached by choos-

ing SysML [5] language, as well as UML [12], to specify

the test model, and by defining specific model cover-

age criteria to generate dedicated test cases for embed-

ded system validation. Concerning technical issues, the

main goal was to develop an enhanced integration with

a modelling environment, a test generation engine and

1 http://www.vehiculedufutur.com
2 http://www.smartesting.com
3 http://www.clemessy.com
4 http://www.psa-peugeot-citroen.com
5 http://www.mips.crespim.uha.fr/
6 http://lifc.univ-fcomte.fr/

a test execution environment dedicated to embedded

systems. A strategic issue is indeed to provide a full

automated approach all the way from the test model to

the execution of the generated test cases. These goals

have been achieved by:

– using an open-source and Eclipse-based modeling

tool, namely Topcased,

– using Smartesting Test DesignerTM to automate the

generation of test cases,

– exporting the generated test cases into a test man-

ager and test execution environment (dedicated to

embedded system validation process), namely the

Clemessy TestInView platform,

– building up interactions between the modelling envi-

ronment (Topcased), the test generation tool (Smar-

testing Test DesignerTM ) and the test execution

platform (Clemessy TestInView) to ensure a fully

automated approach.

All these technical choices have been lead by the cur-

rent practices and interests of PSA end-user engineers,

(UML/SysML modeling using open-source software),

and by the technologies provided by the companies in-

volved in the project (Smartesting Test DesignerTM

and Clemessy TestInView platform). Before introduc-

ing the overall developed toolchain, each of its compo-

nent is firstly described in the next subsections.

2.1 MBT process using Smartesting Test DesignerTM

Smartesting company has released a Eclipse-based too-

led MBT solution to generate and manage functional

tests from behavioural models specified with a subset
of UML notation called UML4MBT [3]. Symbolic ex-

ecution techniques are applied to derive abstract test

cases according to model coverage criteria or use-case

scenarios. These generated abstract test cases can fi-

nally be concretized into executable test scripts that

aim to evaluate functional conformance of the SUT with

respect to the associated UML test model [1,2]. Smar-

testing Test DesignerTM clearly defines the keystone of

the toolchain proposed within the project VETESS. In

this context, this toolchain can be seen as an exten-

sion of the existing Smartesting MBT tooled approach,

which is depicted in the figure 2. This approach consists

in the following MBT process:

1. A UML4MBT test model is written using IBM Ra-

tional Software Architect (RSA).

2. This model is exported into a proprietary pivot file

that is managed by Test DesignerTM in order to

derive test cases from. A test case is composed of

a sequence of operation calls with expected output

results.



Development of an automated MBT toolchain from UML/SysML models 3

3. The generated abstract test cases are basically ex-

ported into XML proprietary files from which some

ad-hoc API can be provided to translate the gen-

erated test cases into specific languages or specific

environments.

Fig. 2 Smartesting MBT tooled approach.

2.2 UML/SysML modeling using Topcased

UML is widely used as a modelling support in indus-

trial context and is today the main specification lan-

guage for object modelling. Recently, to provide suf-

ficient features to make this language useful for sys-

tems engineers, SysML profile has been created. Even

if SysML is a recent modeling language, it is on the

rise in industrial domain to specifically address system

engineering issues, and several modeling tool already

support SysML models. Within the project VETESS,

in order to facilitate the integration of the existing tools

(especially Smartesting Test DesignerTM ), and to ease

delivery, extensibility and updatability of the toolchain,

we decided to use an open-source and Eclipse-based

modeling tool. We thus choose Topcased [15], which

appeared, at the beginning of the project, the more

mature technology satisfying these criteria.

2.3 Test execution using Clemessy TestInView

platform

TestInView (TIV) is a test execution platform based

on a National Instruments hardware architecture (NI

TestStand). It is designed to generate and acquire sim-

ple or complex electric signals and to import mathe-

matical models (as Matlab/Simulink) that simulate the

behaviour of an item of equipment that is absent from

its future working environment. This platform can be

used to describe the test sequences, to execute them to

within the nearest millisecond and to automatically as-

sess the expected results. One of the challenges of the

VETESS project was to create an efficient translation

from abstract test cases (embodied by the message sets

as generated by Test DesignerTM ) into continuous sig-

nals intended to excite the System Under Test. Within

the project VETESS, the test generated with Smartes-

ting Test DesignerTM are loaded by TestInView to be

executed either on physical or simulated equipment.

2.4 Overview of the VETESS toolchain

Fig. 3 VETESS final toolchain.

The project VETESS gives rise to the toolchain de-

picted in the figure 3. The associated test process is

defined as follows:

1. A UML or SysML model is realized using Topcased.

2. The standard UML or SysML model is translated

into a UML4MBT or a SysML4MBT model. The

UML4MBT metamodel was directly derived from [3]

while the SysML4MBT metamodel was defined in

the context of the project to define the SysML sub-

set that can be handled by the toolchain.

3. In the case of SysML test model, the SysML4MBT

file is transformed into a UML4MBT file to be man-

aged by Smartesting Test DesignerTM .

4. Smartesting Test DesignerTM generates test cases

from the model stored in the UML4MBT file.

5. The generated test cases are then exported into Cle-

messy TestInView platform. During this step, an

adaptation layer concretizes the abstract data of
the generated test cases into concrete operation calls

and values. This layer thus allows to automate the

execution of the exported test cases on a simulated

system or on a physical test bench.

The next section gives more details about each of

these steps and details the dedicated tooling develop-

ment making it possible to automate this process.

3 MBT process implementation

To automate the MBT process from UML and SysML

models, the user functionalities are directly inspired by

the current features of Smartesting Test DesignerTM ,

which is the keystone of the toolchain. The implementa-

tion phase aims to adapt Smartesting Test DesignerTM

UML-MBT features to Topcased modeler, to extend it

to take SysML models as input of the process, and to

connect test generation results to Clemessy TestInView

platform.



4 Jonathan Lasalle et al.

3.1 Test model design

The test model, specified with UML or SysML dia-

grams, defines the expected behavior of the SUT. It

formalizes the control points and observation points of

the system, and the expected dynamic behavior of the

system by using OCL notations [19]. However, UML

and SysML contain a large set of diagrams and no-

tations that are defined with a flexible way and some

freedom to support different semantical interpretations.

So, for practical MBT, it is necessary to select a subset

of UML and SysML, and clarify its semantics so that

MBT tools can interpret the UML models.

Smartesting process natively defines such subset

from UML, called UML4MBT, which is precise and

complete enough to allow automated derivation of tests

from these models. It should be underlined that such

restrictions are often necessary in order for the test

generation process to be reliable and/or scalable [13,

6]. Thus, a UML4MBT model has to contain one UML

class diagram to represent the static view of the sys-

tem (with classes, associations, enumerations, class at-

tributes and operations) and one UML Object diagram

to list the concrete objects used to compute test cases

and to define the initial state of the system (it must

be an instantiation of the associated Class diagram).

The dynamic view can be modelled by OCL expres-

sions on pre or postcondition of class operations, and/or

by a Statemachine diagram (annotated with OCL con-

straints). OCL expressions must actually conform to a

subset of the OCL language. As an example, the iter-

ate operation is not supported (more details available

in [3]). A UML4MBT Statemachine has some restric-

tions: it cannot contain parallel states, historic states,

fork and join states, and trans-hierarchical transitions.

Within project VETESS, the UML4MBT expres-

siveness and its restrictions have been integrally pre-

served. However, we have defined the subset of SysML

language, called SysML4MBT, to be supported for test

generation. A SysML model has to contain one Block

Definition Diagram to represent the static view of the

system (with blocks, associations, compositions, enu-

merations, properties, operations, signals, flow ports...),

one Internal Block Diagram to formalize interconnec-

tions between blocks, and one or more Statemachine

diagrams to specify the dynamic view of the system.

SysML4MBT Statemachine can contain much more el-

ements than UML4MBT Statemachine: fork/join, his-

toric and parallel states are indeed allowed. About OCL

annotations, the circumflex (∧) is allowed to enable sig-

nal sending.

A dedicated Eclipse-based plugin was developed to cus-

tomize and extend Topcased UML and SysML mod-

elling capabilities, and to connect it to Smartesting Test

DesignerTM . The UML4MBT version of this Eclipse

plugin is depicted in the figure 4 (in the remainder of

this section, to simplify the presentation of the plu-

gin functions, we only describe UML4MBT plugin since

SysML4MBT plugin offers the same services).

The UML4MBT Topcased plugin functionalities can

be divided into verification and test generation fea-

tures. Firstly, the verification panels allow designing

and checking the correctness of the models with:

1. Syntactical verification (item 1 in figure 4), which

checks that the UML model satisfies UML4MBT

restrictions and verify the absence of errors.

2. Functional verification of the model can be perfor-

med using a simulator that animates the model, and

allows to check manually the correctness of modelled

behaviours (frame 2 in figure 4).

3. To complete the native Topcased design facilities, a

specific OCL editor (frame 6 in figure 4) has been de-

veloped to help engineer specifying OCL constraints

(syntactical colouring, completion. . . ).

When the syntactical verification process does not find

any errors (status is displayed in the frame 3 of fig-

ure 4), it is possible to use the following functionalities

addressing test generation features:

1. The scenario manager (frame 4 in figure 4) allows to

create scenarios (sequences of operation calls) that

will be exported as user test cases.

2. The test suite organizer (frame 5 in figure 4) makes
it possible to manage several test suites (for instance

by filtering model element to be covered by the test

generation algorithm).

Finally, in order to generate test cases, user can ex-

port the test model in a dedicated XML file, which de-

fines the connection with Smartesting Test DesignerTM .

The next section gives details about the model trans-

formations performed during this export step.

3.2 Test model export

The Test DesignerTM input models are serialized with

a XML dialect called TDMODEL. As such, it was nec-

essary to develop software components so that UML

and SysML models designed in Topcased can be au-

tomatically processed by Test DesignerTM to generate

abstract test cases from. The developed components,

which appear at the left-hand side of figure 3, are the

following:



Development of an automated MBT toolchain from UML/SysML models 5

Fig. 4 All windows of the VETESS UML plugin.

1. The UML4MBT metamodel.

2. A translation tool inputting UML4MBT models and

outputting equivalent TDMODEL models.

3. A model transformation inputting UML2 models

as designed in Topcased and outputting equivalent

UML4MBT models.

4. The SysML4MBT metamodel that states which con-

cepts of SysML are to be supported by the VETESS

toolchain.

5. A model transformation inputting SysML models as

designed in Topcased and outputting SysML4MBT

models.

6. A model transformation inputting SysML4MBT

models and outputting UML4MBT models so that

test cases can be generated from SysML models by

the Test DesignerTM tool.

Topcased, following the example of IBM Rational

Software Architect (RSA), relies on the Eclipse Mo-

deling Framework (EMF)7 for managing models. Such

models must conform to a metamodel described in the

Ecore metamodeling language. In order for the tool

chain to seamlessly integrate Topcased (or any other

EMF-based tool), the UML4MBT and SysML4MBT

metamodels have been defined in Ecore. Since an EMF

model can be easily manipulated in Java, we developed

7 http://www.eclipse.org/modeling/emf/

our transformations in Java. We chose not to develop

our transformations using a dedicated model transfor-

mation language such as QVT [11] for avoiding to em-

bed a model transformation interpretor, and thus sim-

plifying the integration process.

UML4MBT was merely designed as a one-to-one

translation of the TDMODEL language, which is ac-

tually defined by a metamodel written in Java. The

graph of Java objects that represents a model can be

serialized and deserialized in XML using the XStream

tool8. As such, the translation from UML4MBT to TD-

MODEL is just one-to-one translation between mod-

els of the same nature but with different (Java-based)

technologies. The translation tools makes thus possible

for a UML4MBT model to be processed to generate

test cases. The translation was made reversible in or-

der for the legacy TDMODEL models to be processed

in an EMF-based environment. For UML2 models de-

signed in Topcased to be processed the same way, a

model transformation was developed so that they are

transformed into UML4MBT models. As TDMODEL

was inspired by (a subset of) UML1.4, UML4MBT also

looks like (a subset of) UML1.4 [3]. As such, the UML2

to UML4MBT transformation looks like a UML2 to

UML1.4 translation for a subset of UML concepts.

8 http://xstream.codehaus.org/



6 Jonathan Lasalle et al.

SysML4MBT was also formalized as an Ecore meta-

model. One important point in that numerous concepts

are shared between UML4MBT and SysML4MBT. Ex-

ample such concepts are project, state-machine, and

package. As there was a need to translate SysML4MBT

models into UML4MBT models in order to generate

test cases from SysML4MBT models, there was much

to be gained if those two metamodels could keep as

similar as possible. This is the reason why we decided

to describe it as a UML4MBT dialect, i.e. UML4MBT

with some additional concepts (e.g. block) and some

other concepts dropped (e.g. instance). In order to cre-

ate SysML4MBT, we thus added necessary concepts to

UML4MBT using the package merge mechanism [10],

following the example of the UML metamodel. More-

over, we developed the package unmerge mechanism

as the package merge counterpart in order to remove

those concepts from UML4MBT that are meaningless

in SysML4MBT. Finally, we obtained the SysML4MBT

metamodel by applying those changes to UML4MBT ;

moreover, we were able to create the one-to-one trans-

formation from SysML4MBT to UML4MBT for those

concepts which were shared between the two metamod-

els. This latter transformation needed to be comple-

mented in order for the concepts added to UML4MBT

to be transformed in elements of UML4MBT. An ex-

haustive introduction of this transformation and dedi-

cated translation rules can be found in [9].

Finally, a model transformation was developed to

create SysML4MBT models from standard SysML mod-

els as designed in Topcased. To ensure compatibility

between toolchain components and obtain more homo-

geneous code, it should be noted that this model trans-

formation was not implemented using dedicated lan-

guage, such as ATL [8], but with Java code. Since sup-

ported concepts of SysML were all made available in

SysML4MBT, the transformation was easy to develop.

The export of the model to a XML file, based on the

SysML4MBT metamodel has been developed. The in-

put file of Smartesting Test DesignerTM is natively de-

fined by a UML4MBT metamodel-based file. So, a trans-

formation from SysML4MBT notation to this UML4MBT

file format has been created and implemented in the

dedicated Eclipse-based plugin. This approach makes it

possible to re-use the Smartesting test generation pro-

cess and technologies initially developed for UML4MBT

models.

SysML being defined as a UML profile, the transla-

tion of SysML4MBT into UML4MBT model consists to

leave out the SysML stereotype, which denotes a simple

model transformation, which is a widespread approach

in Model-Driven Engineering domain [14]. This solu-

tion is thus adopted to translate the equivalent concepts

(SysML4MBT blocks into UML4MBT classes. . . ). For

all others SysML4MBT elements that have no corre-

sponding elements in UML4MBT, dedicated rewriting

rules are required. For example, all parallel elements of

SysML4MBT Statemachine (fork, join, parallel states

and multiple Statemachines) are merged using a kind

of Cartesian product, historic states in SysML4MBT

Statemachine are rewritten by a choice state and a

memory variable,... An exhaustive introduction of this

transformation and dedicated translation rules can be

found in [9].

To ensure compatibility between toolchain compo-

nents and obtain more homogeneous code, it should be

noted that this model transformation was not imple-

mented using dedicated language, such as ATL [8], but

with Java code.

3.3 Test case generation and execution

Once the model has been exported (including the trans-

lation into UML4MBT language in the case of SysML

model), abstract test cases can be automatically gen-

erated using test generation strategy implemented in

Smartesting Test DesignerTM (see figure 5). This strat-

egy basically ensures the covering of each behaviour of

the system: it means that, for each behaviour specified

in the initial UML or SysML model, at least one test

case reaches this behaviour.

Moreover, a specific test generation strategy has

been developed for SysML4MBT models in order to
produce dedicated embedded test cases focusing on send

or receive signals coverage (during the export step, a

check box allows to select whether the strategy should

be applied or not).

Once test cases are generated, a specific publisher is

necessary to translate the generated abstract test cases

into executable test scripts. This step relates to several

issues:

– Generated test cases refer to discrete dimension and

the system to be tested is often continuous.

– Observation should be managed to establish a test

verdict.

– Delaying and performance aspects.

To address these items, abstract test cases are trans-

lated into test scripts, which are directly executable

by an execution environment dedicated to embedded

system features, namely Clemessy TestInView platform

(see figure 6). A dedicated Java publisher (called adap-

tation layer) has been developed to export generated



Development of an automated MBT toolchain from UML/SysML models 7

test cases to a TestInView file. Moreover, a specific

TestStand file is also generated: it defines the test exe-

cution patterns (TestInView steps that are necessary

to execute the test cases: for example initialization,

simulation model loading, tests execution. . . ), and the

concretization mapping table of operations used by ab-

stract test cases. This generated table has to be manu-

ally filled to map each abstract operations to simulated

or real concrete actions.

Finally, to manage continuous system, a last step

consists to create real-time test vectors, which are used

to define stimuli temporal sequences with an accuracy

to one millisecond. Each test is also defined with one

specific test vector, which represents the situation of

the system in a continuous way. In order to define such

real-time test vector, a specific Matlab component has

been developed to automatically concretize the gener-

ated abstract test cases.

This environment, which is fully integrated to the

toolchain, makes it possible to execute test scripts both

on simulated system or real physical test bench.

Fig. 5 Smartesting Test DesignerTM interface

The next section relates to our experience about

software engineering issues and Agile development pro-

cess, which made it possible to experiment this tool-

chain very soon during the VETESS project.

4 Software engineering features and

experimentations

The motivation of the toolchain consists in demonstrat-

ing that MBT approach can efficiently address embed-

ded system validation needs within automotive domain.

To reach this goal, we decided to be driven by case-

studies and end-user requirements and feedbacks. This

Fig. 6 Clemessy TestInView interface

approach leads to deliver toolchain releases early and

frequently during the project. In the context of this

project (about 10 development engineers were involved

during one and a half years, and about 100km separates

the different development teams of the project), one im-

portant issue is a big issue concerns the management

of scattered development team regarding the common

vision of the product, code conflicts and functionality

stability. To be able to nevertheless deliver reliable re-

leases of toolchain, our development methodology has

followed most of the principles of Agile software devel-

opment [7] such as:

– Incremental and iterative process including require-

ments. analysis, design, coding, unit testing and ac-

ceptance testing.

– Close interaction and cooperation between develop-

ers with a lot of pair programming sessions between

academic and industrial partners.

– Face-to-face meeting between developers and end-

users (almost one per month).

– Obtaining functional software is more priority than

writing a lot of short-lived documentation.

As mentioned in the previous section, all develop-

ments have been performed using Java language to main-

tain the code homogeneous and to facilitate the inte-

gration of the components into the toolchain based on

Smartesting Test DesignerTM , which is fully developed

with Java. To coordinate all these development, the fol-

lowing technical approaches and resources have been

achieved:

– The whole source code is stored in a Subversion9

source control repository in order to save all code

versions and to easily share it with all project con-

tributors.

9 http://subversion.tigris.org



8 Jonathan Lasalle et al.

– JUnit tests are developed to cover the executable

code of the toolchain.

– The process of building the toolchain release is auto-

mated using MAVEN10, which automatically com-

piles Java code and running tests each time Hudson

requests it. a modification is committed.

– To provide a continuous integration and uninter-

rupted non-regression verification, HUDSON11 soft-

ware manages the process of building the software

and running the tests each time code is committed

in the source repository by calling MAVEN.

Early and frequent stable releases of the toolchain

made it possible to experiment and evaluate our ap-

proach on several case studies during the two year

project. The most advanced case study, called “Steer-

ing”, deals with the specification of the steering column

of a car: road variations activate the column through

the steering wheel and tyres. The obtained results and

feedbacks given by users about each of these experi-

mentations in terms of test relevance, process reliabil-

ity and approach scalability were always straightaway

taken into account to incrementally improve the MBT

tooled process and toolchain presented in this paper. Fi-

nally, it can be underlined that the case study “Steer-

ing”gives rise to the generation of 154 tests (from a

SysML model) that have been executed both on simu-

lation platform and physical test bench, as illustrated

respectively in figures 7 and 8. A short videotape, de-

scribing and exemplifying the toolchain with this case

study, is available at [18].

Fig. 7 Simulated environment screenshot

5 Conclusions and future work

This paper reports about the results and our experience

with building an MBT toolchain prototype that aims

10 http://maven.apache.org
11 http://hudson-ci.org

Fig. 8 Physical test bench picture

to automate the generation of executable test scripts

from either UML or SysML models, which specify the

expected behaviours of the System Under Test. This

prototype is based on existing tools that have been

adapted and customized to achieve testing process au-

tomation. Such an integrated approach and continuous

process indeed appear to be a strategic step in moving

MBT techniques and methodologies to embedded sys-

tem domain. Several case-studies has been successfully

experimented, and made the proof-of-concept that such

MBT approach from UML and SysML notations is suit-

able and can gain benefits within automotive embedded

system validation in an industrial context.

The future challenges mainly deal with scalability is-

sues especially about model expressiveness and test case

generation time. These scopes of improvement can be

addressed, among other, by increasing the UML4MBT

and SysML4MBT subsets to address component-based

architecture, and by implementing specific model evalu-

ation rules to derive test cases from UML/SysML mod-

els. Smartesting company are notably entering these is-

sues within the ITEA2 project VERDE [17] that aims

to develop a solution for iterative/incremental develop-

ment and validation of Real-Time Embedded System.

Acknowledgements The authors would like to thank all
people who were involved in the project VETESS, especially
M. Alter, M. Bernhard and C. Scherrer from Clemessy, S.
Colin and B. Legeard from Smartesting, F. Bouquet and E.
Oudot from LIFC, J. Guillet, P.-A. Muller and B. Wittmann
from MIPS, and R. May from PSA.

References

1. Bernard, E., Bouquet, F., Charbonnier, A., Legeard, B.,
Peureux, F., Utting, M., Torreborre, E.: Model-based
testing from UML models. In: Proceedings of the Inter-
national Workshop on Model-based Testing (MBT’2006),
LNCS, vol. 94, pp. 223–230. Springer Verlag, Dresden,
Germany (2006)



Development of an automated MBT toolchain from UML/SysML models 9

2. Bouquet, F., Grandpierre, C., Legeard, B., Peureux, F.:
A test generation solution to automate software testing.
In: Proceedings of the 3rd International Workshop on
Automation of Software Test (AST’08), pp. 45–48. ACM
Press, Leipzig, Germany (2008)

3. Bouquet, F., Grandpierre, C., Legeard, B., Peureux, F.,
Vacelet, N., Utting, M.: A subset of precise UML for
model-based testing. In: Proceedings of the 3rd Inter-
national Workshop on Advances in Model Based Test-
ing (A-MOST’07), pp. 95–104. ACM Press, London, UK
(2007)

4. Dias-Neto, A., Travassos, G.: A Picture from the Model-
Based Testing Area: Concepts, Techniques, and Chal-
lenges. Advances in Computers 80, 45–120 (2010). ISSN:
0065-2458

5. Friedenthal, S., Moore, A., Steiner, R.: A Practical Guide
to SysML: The Systems Modeling Language. Morgan
Kaufmann OMG Press (2009). ISBN 978 0 12 374379 4

6. Herrmannsdoerfer, M., Ratiu, D., Koegel, M.: Metamodel
usage analysis for identifying metamodel improvements.
In: Proceedings of the 3rd International Conference on
Software Language Engineering (SLE’10), LNCS, vol.
6563, pp. 62–81. Springer Verlag, Eindhoven, the Nether-
lands (2010)

7. Highsmith, J.: Agile software development ecosystems.
Addison-Wesley (2002). ISBN 0-201-76043-6

8. Jouault, F., Kurtev, I.: Transforming Models with ATL,
LNCS, vol. 3844, pp. 128–138. Springer Verlag (2006)

9. Lasalle, J., Bouquet, F., Legeard, B., Peureux, F.: SysML
to UML model transformation for test generation pur-
pose. In: UML&FM’10, 3rd IEEE Int. Workshop on UML
and Formal Methods. Shanghai, China (2010)

10. Object Management Group: Unified Modeling Language
(UML) infrastructure specification, version 2.3. OMG
Document formal/2010-05-03 (2010)

11. Object Management Group: Meta Object Facility (MOF)
2.0 Query/View/Transformation Specification, v. 1.1.
OMG Document formal/2011-01-01 (2011). MOF QVT
Final Adopted Specification

12. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Mo-
deling Language Reference Manual, 2th edn. Addison-
Wesley (2004). ISBN 0 321 24562 8

13. Sen, S., Moha, N., Baudry, B., Jézéquel, J.M.: Meta-
model pruning. In: Proceedings of the 12th International
Conference on Model Driven Engineering Languages and
Systems (MODELS’09), LNCS, vol. 5795, pp. 32–46.
Springer Verlag, Denver, CO, USA (2009)

14. Sendall, S., Kozaczynski, W.: Model transformation: The
heart and soul of model-driven software development.
IEEE Journal of Software 20, 42–45 (2003)

15. Topcased: Toolkit in OPen-source for Critical Applica-
tion and SystEms Development. http://www.topcased.

org (2010)
16. Utting, M., Legeard, B.: Practical Model-Based Testing

- A tools approach. Elsevier Science (2006). ISBN 0 12
372501 1

17. Web site of the project ITEA2 VERDE. http://www.

itea-verde.org (2010)
18. Web site of the project VETESS. http://lifc.

univ-fcomte.fr/VETESS (2010)
19. Warmer, J., Kleppe, A.: The Object Constraint Lan-

guage: Precise Modeling with UML. Addison-Wesley
(1996). ISBN 0 201 37940 6

20. Zhu, H., Belli, F.: Advancing test automation technology
to meet the challenges of model-based software testing.
Journal of Information and Software Technology 51(11),
1485–1486 (2009)


