
Defining Model Driven Engineering Processes

Frédéric Fondement and Raul Silaghi
Software Engineering Laboratory

Swiss Federal Institute of Technology in Lausanne
CH-1015 Lausanne EPFL, Switzerland

{Frederic.Fondement, Raul.Silaghi}@epfl.ch

Abstract

Software engineering techniques made it possible for de-
velopers to build larger, and more accurate, reliable, and
maintainable software-intensive systems. This was essen-
tially possible by introducing techniques for raising the lev-
el of abstraction for describing the problem and its solution,
and by clearly establishing a methodology to define both the
problem and how to move to its solution. Model Driven En-
gineering (MDE) targets precisely at organizing such levels
of abstraction and methodologies. It encourages developers
to use models to describe both the problem and its solution
at different levels of abstraction, and provides a framework
for methodologists to define what model to use at a given
moment (i.e., at a given level of abstraction), and how to
lower the level of abstraction by defining the relationship
between the participating models. Such an MDE process is
supposed to be defined by means of assets, and methodolo-
gists have the duty to provide such assets. However, it is not
yet clear what exactly these assets are, despite the fact that
techniques to express them have already been widely stud-
ied. This position paper addresses this issue by identifying
some of the MDE assets that have to be provided, and shows
how they should be defined in order to enable them to par-
ticipate in different MDE process definitions.

Keywords. Model Driven Engineering, MDE, Model Driv-
en Architecture, MDA, Component-Oriented Program-
ming.

1. Introduction

Software engineering has enabled developers to build
more important and reliable systems over the years. The
number of lines of code that implement software systems
has increased significantly over the last forty years, moving
from ten thousand to ten million lines of code nowadays [1].
Three main categories of techniques have allowed develop-
ers to manage the increasing complexity of software-inten-

sive systems. First, methodologies, such as SADT, Cataly-
sis, B, (Enterprise) Fondue, or Extreme Programming, de-
fined clearly each step of a development process. Second,
mechanisms for raising the level of abstraction, such as
functional programming, object-orientation, middleware,
or aspects, allowed developers to better encapsulate com-
plexity, and thus, to produce more modular, reusable, and
extensible programs. Third, software verification and test-
ing helped to enforce the quality of the final system.

Model Driven Engineering (MDE) [2] attempts to orga-
nize new efforts in these directions, and offers the possibil-
ity (1) to clearly define methodologies, (2) to develop sys-
tems at any level of abstraction, and (3) to organize and au-
tomate the testing and validation activities. Moreover, this
technique states that any specification should be expressed
by models, which are both human and machine understand-
able. Models, depending on what they represent, can reside
at any level of abstraction, and can be restricted to address
only certain aspects of the system. Since they are all ma-
chine understandable, several collaborative tools can auto-
mate (at least partially) a certain number of tasks, such as
model refactorings, model refinements, or model to code
generation. As a consequence, the process of developing
systems becomes iterative, refining abstract models to more
concrete ones, and in the end, automatically generating and
deploying the complete code.

Several Computer Aided Software Engineering (CASE)
tools were developed since the late eighties with the same
purpose of facilitating the development and maintenance
processes, most of the time to support a software develop-
ment method. Unfortunately, many problems that appeared
back then are still present nowadays. It is hard to choose the
right tools for answering the different needs of the different
stakeholders [3], with the right levels of abstraction [4],
supporting the right platforms and methodologies, and pro-
viding several features, such as prototyping, test and valida-
tion, version control, traceability, reusability, or even syn-
chronization between models and their implementation.
Moreover, most of the time it is impossible to make these
different CASE tools interoperate. In the end, only a few

tools that impose a very specific method and well-defined
notations will be able to accompany a system during its
complete lifetime. The problem is that the lifetime of a sys-
tem can be longer than thirty years! Relying on a single or
a small set of CASE tools, which might not be supported in
the long term, is often not acceptable. A solution is to devel-
op agreed-upon standards that all CASE tools should use
during the entire life cycle of software systems.

In order to address some of these problems in the context
of MDE, the Object Management Group (OMG) [5] has
launched the Model Driven Architecture (MDA) initiative
[6], challenging to gather and define all specifications nec-
essary to support the MDA approach to software develop-
ment. While some of these specifications have already been
delivered, others are on their way. Their declared intent is
to define precisely what language should be used to express
models [7][8], how to specify model transformations [9],
how to exchange models [10], how to store and make mod-
els evolve [11][12], and, more recently, how to generate
code [13]. However, since MDA is still in its early phases,
and since there are not many industrial applications using
MDA, some of these specifications lack precision, while
others are still missing. In order to overcome technical
problems, such as interoperability, versioning, or transfor-
mations, standardization seems to be the right solution.
However, because of the freedom MDE gives to methodol-
ogists, standardization will not solve problems like com-
plexity and accuracy, which are inherent to the provided
methodology and its associated notations. Moreover, man-
agerial issues like voluntariness and support, main respon-
sibles for the success of a method according to [14], will
certainly not be addressed either. One should remember that
“structured mess is still mess!”.

MDE will significantly help software engineers of any
domain (e.g., cellular phones, automotive embedded sys-
tems, nuclear plant control) by clearly specifying a process
and by constraining all tools that intent to support it to com-
ply with a well-defined set of rules. However, such an MDE
process will not solve all problems since there will always
be systems for which the MDE process will simply not be
adaptable to support their development. Dismissing the
study of this weakness that survived the state of the art be-
fore MDE, the goal of this position paper is to briefly
present (in section 2) how the activities of MDE methodol-
ogists and developers can be performed, and to introduce
(in section 3) the idea of reusable MDE components for de-
fining MDE processes. Concluding remarks and future
work directions are presented in section 4.

2. Model Driven Activities

Model driven activities are the set of actions to be taken
by methodologists, on one hand, and by system developers,

on the other hand, in order to define a clear MDE process,
and to apply it, respectively. After presenting briefly what
does it mean to apply an MDE process from the point of
view of developers, we deduce in the second part what are
the exact assets to be provided in order to clearly define an
MDE process from the point of view of methodologists.

2.1. Applying an MDE Process

The idea promoted by MDE is to use models at different
levels of abstraction for developing systems. Thus, the main
activity of MDE developers is to design models, just like
they used to develop code, but led by a methodology this
time. The advantage of having an MDE process is that it
should clearly define each step to be taken, forcing the de-
velopers to follow the defined methodology in this way. It
should specify the sequence of models to be developed, and
how to derive a model from another one at the abstraction
level immediately above it. By providing developers with
such a methodology, they are supposed to know at any mo-
ment during the development life cycle what is to be done
next and how to achieve it.

Applying an MDE process is depicted in Figure 1. The
system under development is first described by a model at a
very high level of abstraction, i.e., ignoring any kind of plat-
form-related dependencies. Such a model is referred to as a
Computational Independent Model (CIM) in the MDA ter-
minology. This kind of model is intended to capture only
the system requirements, without specifying how to achieve
them; it is the description of the problem. Good candidates
to play the CIM role are use cases [15] and feature-oriented
diagrams [16]. In this paper, we consider the CIM as a
unique model, since its platform-independence remains ab-
solute even though several languages and refinements are
involved for making its details more accurate. A series of
interactive refinements may then be performed that have the
responsibility to make the system more platform-specific at
each refinement step. For instance, the system may be ex-
pressed once again, but more precisely this time, by class
diagrams and state diagrams [17] to show business behav-
ior. Further on, additional information may be added to in-

System
System
System

Code
Platform

Specificity

Abstraction

Re
fin

em
en

ts
/

Re
fa

cto
rin

gs

System
System

Code Generation

System
System
System

Code
Platform

Specificity

Abstraction

Re
fin

em
en

ts
/

Re
fa

cto
rin

gs

System
System

Code Generation

System
System
System

Code
Platform

Specificity

Abstraction

Re
fin

em
en

ts
/

Re
fa

cto
rin

gs

System
System

Code Generation

Figure 1. Model Driven Refinements

tegrate middleware-specific concerns, such as the distribu-
tion concern. Another refinement could further enhance the
resulted distribution-aware model with information specific
to the concrete CORBA middleware technology, before
generating code for a specific CORBA middleware plat-
form (e.g., OpenORB), as explained in [18]. In this paper, a
refined model will be called a Platform Specific Model
(PSM), and a model at the abstraction level immediately
above, which was the source for the corresponding refine-
ment step, will be called a Platform Independent Model
(PIM). These terminologies have already been introduced
by MDA, however, we relativize them in this paper, i.e.,
each PIM is relative to a PSM, and vice-versa. As a conse-
quence, models that are not at the highest or lowest level of
abstraction play the role of PSMs first, and PIMs after-
wards.

 At each step of the MDE process, information related to
quality management could be integrated as well, such as
verification, validation, and test case generation. A verifica-
tion might be the action that checks whether a PSM does not
break the specification promoted by its PIM, or vice-versa
in the case of reverse engineering. A validation step may al-
low system developers (or even clients) to instantiate proto-
types out of intermediate models in order to test their func-
tionalities before the system is fully implemented. Auto-
matic test case generation may produce as outcome
scenarios, i.e., sets of messages that are supposed to be sent
and received by the working system, allowing in this way to
test its actual implementation.

One of the most important advantages of using an MDE
process is its adaptability to changes. When a change oc-
curs, be it at the highest level of abstraction (e.g., a change
in the requirements of the system) or at a lower level of ab-
straction (e.g., moving to another platform, such as moving
from PostgreSQL to MySQL), its impact is well localized
and the parts that are not touched by the change are imme-
diately reusable. However, the refinements have to be per-
formed once again in order to “update” the changing parts.
It becomes more problematic when the modeling language
changes because such re-refinements are not directly possi-
ble.

In order to apply MDE-inspired processes in large
projects, which typically involve many developers and
tools, several issues have to be addressed, such as model in-
terchange, diagram interchange, model versioning, concur-
rent management, and so on. Several MDA specifications
are targeting some of these issues [10][11][12], but these
are more tool-related issues than methodology issues. Nev-
ertheless, they remain problems that will have to be ad-
dressed sooner or later [19].

2.2. Defining an MDE Process

As one can deduce from the previous section, an MDE
process should define:

1. how many levels of abstraction are there, and what
platforms have to be integrated;

2. what are the modeling notations and the abstract syn-
tax to be used at each level of abstraction;

3. how refinements are performed, and what platform
and additional information they integrate into the
lower level of abstraction;

4. how code is generated for the modeling language
used at the lowest level of abstraction, and perhaps
even how to deploy that code;

5. how can a model be verified against the upper level
model, how can it be validated, and how can it gener-
ate test cases for the system under development.

The first important technique is metamodeling [20],
which allows methodologists to define precisely a class of
models. Metamodeling clearly defines a modeling language
by specifying its abstract syntax, eventually along with its
semantics. We also believe it is of paramount importance to
define its possible concrete syntaxes in order to allow con-
forming models to be viewed and modified by different
stakeholders using the different modeling notations that are
available in a given view. If we have a closer look, one level
of abstraction is already defined by the modeling language
to be used. Therefore, defining the corresponding meta-
models solves already the first two duties of methodologists
(points 1 and 2 presented above). Moreover, if the seman-
tics is clearly defined, it is also possible to perform the val-
idation part of point 5. In terms of standards, MDA propos-
es the Meta Object Facility [8], a specification that has
proven its accuracy in defining the abstract syntaxes of sev-
eral modeling languages, and that was implemented by sev-
eral tools. Unfortunately, it does not provide any means do
define the semantics nor the concrete syntaxes.

The second technique is model transformation [21]. This
technique allows methodologists to clearly define relation-
ships between models. Model transformations depend only
on the metamodels of the related models. Methodologists
may use this technique to clearly specify the refinements
from PIMs to PSMs. MDA is about to deliver the MOF
Query/View/Transformations specification [9] to provide
methodologists with a means to realize the model transfor-
mation technique. Moreover, the MOF QVT specification
promotes both forward and reverse transformations, which
will allow to propagate changes to models at lower, respec-
tively upper, levels of abstraction, enabling the possibility
of automatic synchronizations and re-refinements. More-
over, it gives the possibility to verify the PSM model
against the PIM model, and vice-versa, at any moment dur-

ing the development life cycle. When tools implementing
the MOF QVT specification will be available, point 3 and
the verification part of point 5 will be solved as well.

For solving point 4, code generators are needed, which
would map a model to some textual or binary files. In order
to address this issue, OMG has recently launched the
MOF2Text request for proposal [13].

Referring to point 5, an important problem is the current
lack of a tool-independent solution and of appropriate mod-
eling notations for completely specifying how to generate
test cases out of models, how to perform validation and de-
ployment, how to depict such models, and so on. Moreover,
one should be aware that the proposed list of assets to be de-
livered by methodologists is not at all complete, and new
points will probably have to be added as MDA moves
along.

3. MDE Components

Defining an MDE methodology is a hard and long task,
which involves specialists in domains, platforms, testing,
verification, validation, etc. In this section, we investigate
how methodologists could provide the assets discussed in
section 2.2 in a modular way that would facilitate their re-
use by other methodologists. Moreover, solutions are pro-
posed for the unresolved points of section 2.2. We present
first some already existing mechanisms that solve the reuse
issue up to a certain point, how to use such mechanisms, and
what are their limitations and weaknesses. In order to solve
the identified problems, we propose in the second part some
light techniques that would allow methodologists to take
advantage of existing results that already solve some MDE-
related issues.

3.1. Current MDE Techniques and Their
Limitations

The currently existing techniques that address the reus-
ability of assets provided by methodologists are defined ei-
ther at metamodeling or model transformation level. How-
ever, these techniques are not universal enough yet. Similar
ideas are discussed in [22].

One such technique is the basic package dependency.
This relationship enables methodologists to reuse concepts
defined by other metamodels when defining new metamod-
els. For instance, if we have a closer look at the way UML
2.0 [17] and MOF 2.0 [8] are built, one will immediately
notice that they both depend on the same UML 2.0 Infra-
structure [7] using such a package dependency technique.
Moreover, UML 2.0 introduces the «merge» mechanism,
which allows methodologists to add new properties to the
metaclasses of the imported packages. Additional OCL
constraints [23] may be used as well in order to better tailor

the imported packages to the exact needs. However, one
should notice that the package dependency technique re-
quires the existence of packages of such reusable metamod-
els. Fortunately, the UML metamodel presents a very mod-
ular package architecture, allowing some packages to be re-
used without the others. With respect to concrete syntax
definitions, the issue of merging such definitions is not at all
taken into account by this technique.

Another technique is profiling, which allows an external
asset, also referred to as a profile, to extend a given meta-
model for storing new information in the conforming mod-
els. The profiling technique is mainly based on the princi-
ples of branding (i.e., stereotypes) and associated
key/value pairs (i.e., tags). It provides methodologists with
the possibility to enhance metamodels independently from
the methodology. For instance, a refinement step may sim-
ply apply a profile through a model transformation. Follow-
ing the profiling technique, platform specialists have the op-
portunity to formalize their knowledge in reusable data
structures (i.e., profiles), on one hand, and model transfor-
mations to apply such profiles to concrete models, on the
other hand. Several platforms have been already described
this way, e.g., the UML profiles for EJB [24] or CORBA
[25]. Moreover, profiles may extend each other using the
«merge» mechanism, allowing methodologists to describe
abstract platforms and to provide a sequence of refinements
to more concrete platforms (following exactly the MDE
scheme), provided that the metamodel does not change, like
it is the case in [18]. Unfortunately, profiles can be used
only if the metamodel embeds support for a profiling tech-
nique. Moreover, a given profile can only be applied to one,
and only one, modeling language. With respect to concrete
syntax definitions, the issue of extending such definitions is
not at all addressed by profiles.

Model transformations are supposed to be reusable
thanks to the interoperability that everybody hopes MOF
QVT [9] will provide. Since all transformation languages
are supposed to have a common minimal core at abstract
syntax level, a transformation may invoke, or even extend,
another transformation. However, as it stands today, the
QVT specification is neither finalized nor supported by any
tool. Moreover, the belief that a unique standard for the
complete universe of model transformations will exist one
day is somehow an utopia, just like it was believed that all
systems will be described by UML, and only UML, or
metamodels by MOF, and only MOF.

As suggested in [26], another important technique to be
taken into account is semantically rich metamodels, i.e.,
metamodels that come along with specific support to ad-
dress an issue that has been neglected till then. An appropri-
ate example is the Action Semantics [27] extension to
UML, which is now part of the UML specification since

version 1.5. It is interesting to notice that tools already exist
to interpret (or, in other words, validate), and generate code
out of such action-semantics-enabled models. Unfortunate-
ly, the UML action semantics are defined in the context of
a UML-only approach, paying no attention to other meta-
models or UML profiles that already exist out there. As a
consequence, platform specialists that have already provid-
ed platform descriptions through profiles, or through reus-
able metamodel packages, are expected now to provide
model transformations to these semantically rich metamod-
els, for instance to perform validation in the case of action
semantics. A standard metamodel for generating test cases
can be imagined as well. Moreover, one should notice that
the action semantics experience has inspired the latest OCL
definition [23], which defines now a metamodel.

In the same spirit, several semantically rich models have
been defined. For instance, when developing a UML model,
which is supposed to be further on translated to the C lan-
guage, access to the standard library and the data types of
the C language should be provided as well. This is support-
ed by additional UML model elements that are integrated
into the models of the system under development, but only
at the level of abstraction where the C language has been
chosen as the programming language platform.

3.2. Component-Oriented Metamodeling

As presented in section 3.1, some techniques already ex-
ist for methodologists to reuse what others have previously
defined. However, these techniques are not mature enough
yet to provide methodologists with the same reusability
power that component-oriented programming [28] has in-
troduced to the software engineering world. We explore
now how components can be used in defining MDE pro-
cesses.

The most important characteristic of components is their
interfaces, namely the required and provided interfaces.
Required interfaces declare the contract of what the envi-
ronment is supposed to make available to components. If
another system part of the environment provides the realiza-
tion of the required interfaces of a component, it enables
the possibility to use that component, which is then able to
realize the contract defined by its provided interfaces. As
a consequence, any client system, including other compo-
nents, providing realizations for the required interfaces of
a component can use that component afterwards according
to its provided interfaces.

Profiles have been called MDA components as well [29].
This seems true at a first impression, but the resemblance
does not go that far. The provided interfaces can certainly
be compared to the stereotypes and tags defined by profiles.
Required interfaces can be compared to the extended meta-

model. Component behavior can be compared to the endo-
morphic model transformation that applies a profile to con-
crete models. Unfortunately, such a modularity is not al-
ways achievable. For instance, the required interfaces,
i.e., the extended metamodel, cannot always be realized as
required by the different client models that will use the pro-
file afterwards. An immediate consequence of this is that
profiles developed for a given metamodel cannot work with
another one, even if the two metamodels are comparable.
For instance, all the numerous profiles defined for UML 1.4
will simply become obsolete once the UML 2.0 is delivered.
One can argue that model transformations may solve this
problem, but they cannot because the “profiled” model, i.e.,
the model resulted by applying the profile to a concrete
model, will no longer conform to the new metamodel,
which is certainly richer than the old metamodel that the
profile actually extends. Stating this in another way, if one
wants to benefit from the new facilities offered by UML
2.0, s/he cannot work with profiles extending the UML 1.4.

The adapter structural pattern [30] together with the
MOF QVT may provide some help to solve the previously
presented problem. Both the pattern and the QVT promote
automatic data conversion wherever needed. In the case of
profiles and metamodels, profiles should not extend well
defined metamodels, but virtual metamodels, also referred
to as views, that will be adapted later on to concrete meta-
models. An example that suits very well the problem we are
discussing is OCL 2.0 [23], which defines its own meta-
model by extending (based on the package dependency
mechanism) the UML 1.4 metamodel. The issue is now how
to make OCL 2.0 work both with UML 2.0 and MOF 2.0,
i.e., how to use OCL 2.0 both for specifying constraints in
UML 2.0 models and for specifying “well-formedness”
rules for MOF 2.0 defined metamodels (such as the UML
2.0 metamodel). Instead, the OCL metamodel could be
viewed as a generic profile, or an MDA component, extend-
ing a generic view that could be adapted later on to all inter-
esting metamodels, including the domain specific languag-
es that methodologists might consider more suitable than
UML or MOF for modeling different concerns. Following
such an approach, an OCL interpreter, or code generator,
could be applied to any model conforming to such adapted
metamodels since it would depend only on the OCL generic
profile. Moreover, another profile could extend or reuse the
presumed OCL profile, by adapting its own extended view
to the extended view of the OCL profile.

The same approach can be reused for model transforma-
tions as well, since model transformations depend on the
metamodels of the models manipulated as input and output.
A view approach, making transformations depend on views
instead of metamodels, may be much easier to reuse by only
adapting the views to concrete metamodels.

4. Conclusions and Future Work

Provided that accurate standards (as promised by MDA)
and tools will be available, Model Driven Engineering will
reduce significantly the work of system developers and
maintainers. Nevertheless, it will be a challenge for meth-
odologists to correctly and clearly define an MDE process.
Moreover, the component-oriented modularization of the
assets that methodologists should provide as part of an
MDE process definition will play an important role in the
reusability of (parts of) MDE processes by other methodol-
ogists. Each such MDE component should be easily com-
prehensible in order for the final MDE process to be under-
standable and then usable by system developers. This would
allow a methodology to be tailored, or even built entirely
from scratch, by simply assembling MDE components,
with the final purpose of guiding the development and real-
ization of a specific project.

In this position paper, we presented a class of possible
MDE processes, and we identified some of the most impor-
tant assets to be delivered by methodologists for fully spec-
ifying such MDE processes, taking the classical form of
metamodels and model transformations. These assets are:

• the sequence of levels of abstraction,
• the modeling language to be used at each level of ab-

straction, including their possible (partial) representa-
tions in order to be understood by the different stake-
holders of an MDE project,

• refinements that map these levels of abstraction be-
tween different modeling languages by relying on
model transformations,

• mappings to already existing semantically rich mod-
eling languages, for instance for validation or test cas-
es generation.

Moreover, we proposed to slightly change the way plat-
forms are described, taking advantage of the adapter GoF
pattern. Platforms may still be described by profiles, but a
hierarchy of profiles that adapt no longer a metamodel but
a view of a metamodel is more recommended. The changes
that such profiles inflict on the concrete syntaxes should be
provided as well. Moreover, in order to be easily integrated
in an MDE process, these profiles should be delivered with
interactive transformations that act on the extended views,
on one hand, and facilitate the process of applying the pro-
files to concrete models, on the other hand. The intent of
having such transformations is to hide from developers the
details of the different profiles. Developers are not required
to know both the concrete and abstract syntaxes of a model-
ing language. Further more, they should not be required to
know the content of a profile if a concrete syntax could
solve the problem.

The last proposition is to take advantage of semantically
rich components for MDE assets, using generic profiles and
model transformations. Such a component declares a view
that it can manipulate (i.e., required interfaces), perhaps a
metamodel it is able to deliver based on this view (i.e., pro-
vided interfaces), and a set of behaviors it is able to offer.
An example was considered, namely an OCL interpreter
component, which declares a view and provides the OCL
metamodel related to this view along with several features,
such as to parse textual OCL constraints, provide type
checking, interpret expressions, or find violating model el-
ements. To become concrete, the declared view must be fur-
ther adapted to UML 1.x, UML 2.0, MOF 1.4, MOF 2.0,
etc. Moreover, just like normal components, MDE compo-
nents can rely on and use other MDE components.

Acknowledgments

This work was partially supported by the Hasler Stiftung
under grant number DICS-1850 and the INTERREG III
TestUML project under grant number 14/AJ/9.1/1.

References

[1] J.-M. Jézéquel, “Model-driven engineering: Basic princi-
ples and challenges”, Invited Presentation at Formal Meth-
ods for Components and Objects (FMCO'03), Leiden,
Netherlands, November 2003.

[2] S. Kent, “Model Driven Engineering”, Integrated Formal
Methods: Third International Conference, IFM 2002,
Turku, Finland, May 15-17, 2002. LNCS Vol. 2335,
Springer-Verlag, 2003, pp. 286 – 298.

[3] R. Le Delliou, C. Mersier, “How to choose a software de-
velopment method: a French company EDF’s experience
report”, Proceedings of the Conference on Software Engi-
neering Environments, Noordwijkerhout Netherlands, 5-7
April 1995.

[4] A. Seffah, J. Rilling, “Investigating the relationship be-
tween usability and conceptual gaps for human-centric
CASE tools”, Proceedings of the Human-Centric Comput-
ing Languages and Environments Symposia, 5-7 September
2001.

[5] Object Management Group, http://www.omg.org/, Sep-
tember 2004.

[6] Object Management Group, MDA Guide, v1.0.1, omg/03-
06-01, June 2003.

[7] Object Management Group, UML 2.0 Infrastructure Final
Adopted Specification, ptc/03-09-15, September 2003.

[8] Object Management Group, Meta Object Facility (MOF)
2.0 Core Final Adopted Specification, ptc/03-10-04, Octo-
ber 2003.

[9] Object Management Group, MOF 2.0 Query/Views/Trans-
formations RFP, ad/02-04-10, April 2002.

[10] Object Management Group, XML Metadata Interchange
(XMI), v2.0, formal/03-05-02, May 2003.

[11] Object Management Group, MOF 2.0 Versioning and De-
velopment Lifecycle RFP, ad/02-06-23, June 2002.

[12] Object Management Group, MOF 2.0 Facility and Object
Lifecycle RFP, ad/03-01-35, January 2003.

[13] Object Management Group, MOF Model to Text Transfor-
mation Language RFP, ad/04-04-07, April 2004.

[14] J. Iivari, “Why are CASE Tools Not Used?”, Communica-
tions of the ACM, Vol. 39, No. 10, October 1996.

[15] I. Jacobson, Object-Oriented Software Engineering: A Use
Case Driven Approach, Addison-Wesley, June 1992.

[16] K. Kang, S. Cohen, J. Hess, W. Novak, A. Peterson, “Fea-
ture-Oriented Domain Analysis (FODA) Feasibility Study”
Technical report CMU/SEI-90-TR-21, ADA 235785, Soft-
ware Engineering Institute, Carnegie Mellon University,
November 1990.

[17] Object Management Group, UML 2.0 Superstructure Final
Adopted specification, ptc/03-08-02, August 2003.

[18] R. Silaghi, F. Fondement, A. Strohmeier, “Towards an
MDA-Oriented UML Profile for Distribution”, Proceed-
ings of the 8th IEEE International Enterprise Distributed
Object Computing Conference, EDOC, Monterey, CA,
USA, September 20-24, 2004. IEEE Computer Society,
2004, pp. 227 – 239. Also available as Technical Report, Nº
IC/2004/49, Swiss Federal Institute of Technology in Lau-
sanne, Switzerland, May 2004.

[19] M. Alanen, J. Lilius, I. Porres, D. Truscan, “Realizing a
Model Driven Engineering Process”, Technical Report No.
565, Turku Centre for Computer Science, November 2003.

[20] C. Atkinson, T. Kühne, “The Role of Metamodeling in
MDA”, International Workshop in Software Model Engi-
neering (in conjunction with UML’02), Dresden, Germany,
October 2002.

[21] S. Sendall, W. Kozaczynski, “Model Transformation: The
Heart and Soul of Model-Driven Software Development”,
IEEE Software, Vol. 20, Issue 5, September 2003, pp. 42 –
45.

[22] J.-P. Almeida, R. Dijkman, M. van Sinderen, L. Ferreira
Pires, “On the Notion of Abstract Platform in MDA Devel-
opment”, Proceedings of the 8th IEEE International Enter-
prise Distributed Object Computing Conference, EDOC,
Monterey, CA, USA, September 20-24, 2004. IEEE Com-
puter Society, 2004, pp. 253 – 263.

[23] Object Management Group, UML 2.0 OCL Final Adopted
specification, ptc/03-10-14, October 2003.

[24] Rational Software Corporation, UML Profile for EJB, JSR-
000026, Public Draft, May 2001.

[25] Object Management Group, UML Profile for CORBA Spec-
ification, v1.0, April 2002.

[26] A. Kleppe, J. Warmer, “Do MDA Transformations Pre-
serve Meaning? An investigation into preserving seman-
tics”, MDA Workshop, York, UK, November 2003.

[27] S. Mellor, S. Tockey, R. Arthaud, P. Leblanc, An Action
Language for UML: Proposal for a Precise Execution Se-
mantics, UML 98, LNCS Vol. 1618, Springer-Verlag,
1998, pp. 307 – 318.

[28] C. Szyperski, Component Software, Addison-Wesley, De-
cember 1997.

[29] P. Desfray, “MDA – When a major software industry trend
meets our toolset, implemented since 1994.”, v1.2, Softeam
whitepaper, May 2003.

[30] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Pat-
terns: Elements of Reusable Object-Oriented Languages
and Systems, Addison-Wesley, January 1995.

	Defining Model Driven Engineering Processes
	1. Introduction
	2. Model Driven Activities
	2.1. Applying an MDE Process
	2.2. Defining an MDE Process

	3. MDE Components
	3.1. Current MDE Techniques and Their Limitations
	3.2. Component-Oriented Metamodeling

	4. Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

