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Abstract
Abstract

Model Driven Engineering (MDE) promotes the use of models as primary artefacts of a 
software development process, as an attempt to handle complexity through abstraction, e.g. 
to cope with the evolution of execution platforms. MDE follows a stepwise approach, by 
prescribing to develop abstract models further improved to integrate little by little details 
relative to the final deployment platforms. Thus, the application of an MDE process results 
in various models residing at various levels of abstraction.

Each one of these models is expressed in a modeling language, in which one may find 
appropriate concepts for the abstraction level considered. Many advocate to use the right 
(modeling) language for the right purpose. This means that it is sometimes better approach 
to use small languages specific to the considered domain and abstraction level, than to use 
general purpose languages (e.g. UML) when they do not perfectly fit the (modeling) needs. 
As a matter of fact, an MDE development process, which involves many different domains 
and abstraction levels, should also involve a large variety of modeling languages. Project 
managers who want to apply an MDE process need to deal with this language proliferation 
to such an extent that, in the long run, one may infer that language engineers can become 
major actors of software development teams.

We believe that comprehensive modeling language management facilities may con-
siderably alleviate that MDE drawback. Such facilities may include modeling language def-
inition, extension, adaptation, or composition. To define a (modeling) language, one need to 
define its abstract syntax, its semantics, and one or more concrete syntaxes. This thesis 
focuses on concrete syntax definition for modeling languages, when the abstract syntax is 
given in the form of a metamodel. We will provide solutions both for textual and graphical 
concrete syntaxes.

Some of our experiences in building textual languages (as MTL, a model transforma-
tion language), and graphical languages (as Netsilon, a web-application modeler) has shown 
that a lot of work was spent in implementing interface using traditional techniques, be it a 
text processor generated from a compiler compiler specification, or a modeler making use 
of modern 2D graphical libraries. Indeed, abstract and concrete syntax were implemented in 
a disconnected way, and it was then necessary to assemble them, which became rapidly 
clumsy while abstract syntax evolved.

We built our solution to concrete syntax definition as companions of the abstract syn-
tax. The definition of concrete syntax we propose here made it possible to build automatic 
tools able to analyze or synthesize models from/to text, and to create graphical modelers. 
We will present a metamodel for textual concrete syntax definition to construct constructive 
reversible grammars. We will also propose a technique for graphical concrete syntax defini-
tion following a two-step process: specification and realization. Specification is a restrictive 
approach in which a metamodel defines a graphical concrete syntax. Both relations with 
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Keywords
abstract syntax and spatial relationships are expressed by means of constraints. The realiza-
tion step proposes a way to provide the concrete syntax tree a meaning, by attributing it a 
graphical appearance, and by expressing possible user interactions.

The structure of the document is the following. After introducing in deeper details the 
problem and the general structure of the solution we propose, we will take a tour of MDE, 
text and graph grammars. Then, we will present Netsilon as an example of an MDE tool to 
MDE development, which required both the definition of a graphical and a textual modeling 
language. The two following sections will present the solutions we propose for textual and 
graphical concrete syntax definition, respectively. Final remarks and possible improve-
ments, especially regarding reusability in general of MDE meta-artifacts (like metamodels 
or model transformations), and of concrete syntax in particular, will conclude the document.

Keywords

Model Driven Engineering, Metamodeling, Language Engineering, Concrete Syntax, Tex-
tual Concrete Syntax, Graphical Concrete Syntax, Scalable Vector Graphics.
ii



Version Abrégée
Version Abrégée

L'ingénierie dirigée par les modèles (IDM) promeut les modèles comme composants princi-
paux d’un processus de développement logiciel. Cette approche tente d’organiser la com-
plexité par l’abstraction, par exemple afin de faire face à l’évolution des plate-formes 
d’exécution. L’IDM suit une approche par étapes dans laquelle sont développés des modèles 
abstraits, peu à peu améliorés pour y intégrer les détails dont a besoin la plate-forme de 
déploiement finale. Ainsi l’application d’un processus IDM produit une multitude de modè-
les à différent niveaux d’abstraction.

Chacun de ces modèles est exprimé dans un langage supposé apporter les concepts 
adéquats pour le niveau d’abstraction considéré. De nombreux auteurs préconisent d’utiliser 
le langage (de modélisation) le plus adapté possible au but poursuivi. En d’autre termes, il 
est souvent plus ingénieux d’utiliser de petits langages très spécialisés pour un domaine et 
un niveau d’abstraction donné, que d’utiliser des langages génériques (tels UML) quand ils 
ne satisfont pas pleinement au besoins de la modélisation. C’est pourquoi un processus de 
développement IDM, qui implique de nombreux domaines et niveaux d’abstraction, doit 
souvent impliquer de nombreux langages. Les chefs de projets désireux d’adopter une 
approche IDM se voient donc dans l’obligation de jongler avec une véritable prolifération 
de langages, ceci à tel point qu’on est en droit de se demander si les ingénieurs du langage 
ne seront pas les partenaires indispensables des équipes de développement logiciel du futur.

L’idée développée dans ce document est qu’un mécanisme générique de gestion de 
ces nombreux langages simplifierait sans doute cette situation spécifique à l’IDM. De tels 
mécanismes seraient par exemple capables de définir complètement des langages de modé-
lisation, de les étendre ou les adapter, voire de les composer. Pour définir un langage, qu’il 
s’agisse d’un langage de modélisation ou non, il est nécessaire de spécifier sa syntaxe abs-
traite, au moins une syntaxe concrète et sa sémantique. Cette thèse s’intéresse à la définition 
de syntaxes concrètes, une fois la syntaxe abstraite établie sous forme de métamodèle. Ces 
syntaxes concrètes peuvent être soit textuelles, soit graphiques.

Certaines de nos expériences dans la construction de langages textuels (comme MTL, 
un langage de transformation de modèles) ou graphiques (tel Netsilon, un modeleur d’appli-
cation internet) ont montré que beaucoup d’énergie est dépensée dans l’implémentation des 
interfaces utilisateur, qu’il s’agisse de processeurs de texte générés à partir de spécifications 
pour compilateur de compilateurs, ou de modeleurs créés à partir de bibliothèques pour la 
représentation graphique en deux dimensions. En effet, dans ces projets, les syntaxes abs-
traites et concrètes sont développées de manière indépendante, ce qui pose rapidement des 
problèmes en terme de cohérence lors des évolutions de la syntaxe abstraite.

Les solutions proposées ici définissent les syntaxes concrètes comme dépendantes des 
syntaxes abstraites. Il a été possible de construire des implémentations prototypes basées 
sur les approches proposées. L’une d’elle est capable de produire du texte à partir d’un 
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modèle, ou inversement un modèle à partir d’un texte. Une autre est capable de fournir un 
modeleur graphique maintenant en cohérence un modèle et sa représentation graphique. La 
première contribution de cette thèse est la définition d’un métamodèle pour la spécification 
constructive de syntaxes textuelles réversibles. La seconde contribution est une méthode de 
spécification de syntaxes graphiques en deux étapes: l’étape de spécification et l’étape de 
réalisation. La spécification suit une approche restrictive dans laquelle un métamodèle défi-
nit la structure d’un graphe de syntaxe concrète. Des contraintes viennent en complément 
afin d’exprimer la cohérence entre les syntaxes concrète et abstraite, ainsi que les règles de 
composition spatiale. L’étape de réalisation consiste à préciser le mode de représentation du 
graphe de syntaxe concrète, ainsi que des interactions possibles avec un utilisateur souhai-
tant modéliser un système.

Après une brève introduction, ce document commencera par un aperçu de l’IDM ainsi 
que des techniques communément acceptées de spécification de syntaxes concrètes textuel-
les et graphiques. Nous verrons ensuite l’outil Netsilon, qui est un exemple d’outil de modé-
lisation pour l’IDM: nous pourrons alors avoir un exemple de démarche IDM et de 
spécification de langages textuels et graphiques. Nous en déduirons de possibles améliora-
tions dans la construction d’outils pour l’IDM basés sur les langages. Les deux chapitres 
suivants décriront les approches proposées pour la spécification de syntaxes textuelles et 
graphiques. Enfin, nous conclurons sur les améliorations à apporter aux approches propo-
sées, notamment en ce qui concerne la réutilisabilité des artefacts des méthodes de type 
IDM en général (par exemple les métamodèles ou les transformations de modèles), et des 
syntaxes concrètes en particulier.

Mots Clefs

Ingénierie Dirigée par les Modèles, Métamodélisation, Ingénierie des Langages, Syntaxes 
Concrètes, Syntaxes Textuelles, Syntaxes Graphiques, Scalable Vector Graphics.
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Introduction
Chapter 1:

Introduction

1.1 Promoting Abstraction through Languages

The continuous evolution of hardware towards more and more execution speed and mem-
ory capacity paved the way to more and more complex software. Software engineering was 
born almost 40 years ago, when it became clear that software development could not be 
conducted anymore without engineering guidance and specific techniques, such as software 
development methods, execution platforms and abstraction mechanisms.

Methods intend to state clearly the steps to be taken to develop a software system. 
They identify the various stakeholders (e.g. business analyst, software architect, software 
developer) and their respective roles and duties. Methods help organizing tasks of team 
members for both producing and maintaining software systems. Methods range from very 
precise techniques designed for developing well-defined systems with an emphasis on reli-
ability (e.g. B [Abr96]), to collections of informal best practices intended for rapid applica-
tion development of systems with highly evolving requirements (e.g. eXtreme 
Programming [BA04]).

Platforms are layered collections of reusable software or hardware components 
intended to support further layers of software. They offer well defined services that can be 
accessed by connected software through well-agreed upon collections of interfaces. Plat-
forms can be of very different natures: examples for kinds of platforms are processors, 
which offer sets of instructions, operating systems, which offer a common mean to access to 
categories of hardware (including processors) and organize process flows (e.g. POSIX), vir-
tual machines, which offer a common behavior on different operating systems (e.g. JRE as 
implemented for various operating systems), and object request brokers, which facilitate the 
collaboration of distributed and heterogeneous software components (e.g. CORBA 
[ABB+04]).

Abstraction, in a general sense, is a mental selection mechanism intended to discard 
information that is not relevant at a given point in time. As such, abstraction is a cornerstone 
of software engineering techniques and methods. As a matter of fact, abstraction allows 
engineering systems by concentrating first on core business functionalities while deferring 
secondary concerns like details of final execution platform. The details discarded earlier are 
introduced later on in the system by "lowering the level of abstraction", either by evolution 
or by refinement. Platforms are examples for supporting abstraction in software engineer-
ing, in that offered interfaces actually hide implementation details to the client software sys-
tem. Introducing abstraction in software system engineering can be achieved either 
1
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explicitly via interfaces of platforms, or implicitly by embedding specific concepts in lan-
guages.

In the explicit case, interfaces are collected in libraries that can be used in program 
code. An evolution of explicit use of platform is Component Oriented Programming 
[Szy02], which fragments computer systems into a framework of different software compo-
nents interrelated through their interfaces. Platforms are here considered as already devel-
oped ("off-the-shelf") components, following the example of the CORBA platform which 
offers a predefined set of interfaces (e.g. in [BDII02] and in [ABH+00]). However, the 
explicit use of platform becomes tedious as soon as platforms become more complex 
[CBR03]. For instance, «popular middleware platforms, such as J2EE, .NET, and CORBA, 
contain thousands of classes and methods with many intricate dependencies and subtle side 
effects that require considerable effort to program and tune properly. Moreover, since these 
platforms often evolve rapidly —and new platforms appear regularly— developers expend 
considerable effort manually porting application code to different platforms or newer ver-
sions of the same platform» [Sch06].

In the implicit case, services offered by platforms are conceptualized and made avail-
able via constructs of a specific artificial language (as the opposite of natural language), be 
it a modeling language or a programming language. In the case of executable languages, 
language statements (i.e. language sentences) are either interpreted by a system that refers 
to the platform, or compiled into another language that makes less assumptions about the 
peculiarities of the platform. In both cases, additional information about the platform is 
required.

The hierarchy of programming languages is a good example of abstraction through 
languages. Basically, hardware processors interpret instructions written in a language with 
only two lexemes: true and false. For computer systems to be easier to program by humans, 
patterns of binary instructions were abstracted in assembly languages (one per kind of pro-
cessor), which define concepts such as register, instruction, or datum. Assembly code can 
be compiled back into a stream of true/false lexemes so that the processor (platform) can 
execute the specification. The pattern applies again for 3GL languages (e.g. Fortran, C) that 
are compiled into assembly languages, and that embed concepts such as function or struc-
ture. An interesting result is code portability across platforms: a C specification may be 
compiled for various kinds of processors that offer similar behavior yet offering different 
instruction sets. Note that a 3GL language may be defined on top of another 3GL language 
(e.g. C++ on top of C). 4GL languages apply the pattern once more and leave the program-
matic technological space to offer concepts closer to the problem domain. The idea was fur-
ther emphasized in Domain Specific Languages (DSLs) [KMB+96].

Another such illustration of practical use of abstraction is modeling. A model is a sim-
plification of a system valid in certain circumstances, and that is easier to reason on, i.e. eas-
ier to engineer, manipulate, communicate, etc. Again, a model is expressed in a given 
(modeling) language that captures abstraction through specific concepts. Model Driven 
2
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Engineering (MDE - [Ken02]) and related techniques ([GSCK04], [MCF03], etc.) promote 
the systematic use of models in the software lifecycle. A model resides at a given level of 
abstraction regarding platform dependency. Platforms for computer systems (web applica-
tion servers, database servers, ORB frameworks, operating systems, etc.) appear and evolve 
very rapidly. While a given category of platforms embrace a given number of common con-
cepts, each platform has its specificities that computer systems need to deal with. By the 
systematic use of models, computer system developers can first concentrate on an abstract 
model to describe the core business. Further activities concretize the model (as the opposite 
of abstract) either by improving the model or by building new models to integrate details 
about how the final system may integrate the platform(s). An important advantage of MDE-
like technique is that they provide means to automate the concretization mechanism, fol-
lowing the example of compilers for 3GL languages. Note that the decision of the final plat-
form is not taken yet at the time the abstract model is developed, and that the abstract model 
may be reused to target different platforms. As we will see in section 2.1.1 on page 11, one 
may even see MDE-like technologies as a mean to formalize at least part of a method, by 
stating, using formal specifications, the flow of models to develop and improvements to 
bring them. Moreover, especially if one introduces the notion of abstract platform 
[ADvSP04], one may develop a system specification taking the form of a model that can 
serve to target different platforms. As a summary, this promising way makes it possible to 
develop software systems taking advantage of abstraction as offered by modeling lan-
guages, handle introduction of platforms, and even provide support for methodology.

MDE-like techniques propose abstraction through modeling languages. To do so, two 
philosophies are possible. General purpose modeling languages, like UML [AAB+07], 
offer a common mean to model systems of very different natures. Advantage is that those 
(usually broad) languages can be used to model different systems once those languages are 
mastered by actors of development project. Moreover models are easier to understand when 
it comes to maintenance. General purpose languages are often well supported by tools. A 
problem is that the concepts they propose fit only partially the demands of the system 
domain(s). The second philosophy, as proposed in [CESW05] or in [KSLB03], is to apply 
the experience gained in the domain of specific languages to modeling, by defining specific 
modeling languages dedicated to the domain of the system under study. Developing system 
using such domain specific languages is called Domain Specific Modeling (DSM, e.g. in 
[Poh03]). In the software development lifecycle, which implies various models of various 
domains at various levels of abstraction, making use of a DSM approach implies the use of 
a large number of DSLs. The problem is that the target audience of a domain specific mod-
eling language is rather small, making it hardly affordable to develop dedicated tools to sup-
port DSLs. Examples for such tools are modeling environments (graphical Computer-Aided 
Software Development tools, CASE tools in short, or textual Integrated Development Envi-
ronments - IDEs in short), interpreters or transformers to executable languages.
3
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To apply a DSM development process, a project architect needs to define all those 
DSLs that have to be used, how they relate to each other (e.g. transformation between two 
DSLs, or usage of a DSL within another), and under which circumstances they are applied. 
While MDE is designed to manage complexity of software and platforms, it tends however 
to make more complex the task of project management. The problem is even more complex 
if some of these languages need to be customized.

In the past, such proliferation of languages, with lack of interconnected tool support, 
put a break on the development of DSL usage [Iiv96]. The novelty brought by MDE-like 
technologies is to ease development of such languages and tools. Two key technologies are 
at the core of the MDE-like technologies: metamodeling and model transformation. Meta-
modeling makes it possible to define the abstract syntax of languages. A metamodel is the 
placeholder for modeling static concepts of a language (i.e. its vocabulary) and theirs rela-
tions (i.e. the taxonomy). A sentence of a language is embodied by a model that conforms to 
the metamodel of this language, i.e. structure of the model graph follows directives of the 
metamodel. By its graph nature, one may call the model the abstract syntax graph. Model 
transformations may express behavior of the language by stating how models may be 
manipulated. Model transformations, for their definition, rely on the metamodel of the 
transformed models. Model transformations may be used for various purposes: transform-
ing a model of a given language into a model of another language, adding information into a 
model, mixing models of a same language, making a model evolve according to an event, 
etc.

A language is defined by its abstract syntax, its semantics, and as much concrete syn-
taxes as necessary. In the context of MDE-like technologies, metamodeling addresses that 
issue of defining the abstract syntax. Different solutions to capture semantics have been 
proposed (e.g. using model transformations [KW03, MB06]), but semantics specification is 
still subject to discussions [HR04]. The problem of concrete syntax has recently gained 
interest in the MDE community.

In this thesis, we concentrate on the definition of concrete syntaxes for languages 
whose abstract syntax is already provided as a metamodel. We investigate specification 
techniques (for both textual and graphical languages) that must be precise enough for an 
automatic tool to provide a modeling environment (CASE or IDE). Note that specifying 
concrete syntax is not a new problem and has found some solutions in non metamodel-
related communities. For instance, text structures may be formally defined using generative 
grammars [Cho56] and graphics by graph grammars [Jon90].

1.2 Motivations

Figure 1.1 provides an overview of a typical usage and definition of concrete syntaxes for 
metamodel-based languages. The abstract syntax is modeled by a metamodel. A language 
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sentence is a model, which is an instance of the concepts defined in the metamodel, as 
depicted by the «conformsTo» relationship. Dashed arrow represent dependencies while 
bold arrows represent data flow. Grayed items represent artifacts that are at the modeling 
level (e.g. a language sentence - M1 in the MDA terminology - see section 2.1.3.1 on 
page 18), and white items are data necessary to define a language (i.e. the specification for a 
language - M2 in the MDA terminology). The figure shows possible solutions to manage 
graphical concrete syntax (at the left) and textual concrete syntax (at the right).

At the left of model, in the figure, appears specification for graphical concrete syntax
as promoted recently by meta-case tools such as the GMF tool [Ecl06]. A Representa-
tion model is defines the icons to be used. Such model is specified in a language which 
may declare concepts as circle, rectangle, or path, and which must have clear semantics 
regarding representation. Mapping is a model that maps a concept in the language to an 
icon described in the representation model. Interaction is another model which states 
how one may impact the model by interacting with the representation. As an example, this 
latter model may describe what a move is and how it impacts the representation. Note that 
this architecture is not adopted by all meta-case tools: some may ignore abstract syntax and 

Figure 1.1: Concrete Syntax for Metamodel-Based Languages
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thus do not provide mapping; some others only provide default interactions and thus do not 
need any interaction model. Meta-case tools, according to those models, be it by interpreta-
tion or compilation, offer a "derived" CASE tool specialized in manipulating models of 
such defined graphical languages. Graphical representation for a model often requires infor-
mation that may not be found in the model. As an example, if the location of an icon on a 
graphical diagram is left free, information about the actual location appears in the Repre-
sentation Data model (following the example of Diagram Interchange [ADG+06]). 
Note that this approach to graphical concrete syntax definition for metamodel-based lan-
guages is relatively new. Before, one typically needed to design graphical languages in an 
ad-hoc way, using general purpose two-dimensional graphical libraries for programming 
languages (e.g. GEF [Ecl]).

At the right of the model, in the figure, appears a specification for textual concrete 
syntax. For historical reasons, this specification is separated in two different parts depend-
ing whether one consider producing textual representation from a model, or producing a 
model from textual representation. To produce textual representation, a code generator often 
instantiates text templates while visiting the complete model to produce text, following the 
example of the AndroMDA tool [Boh07]. Each text template states how a given concept 
should be rendered. When it comes to analyzing some text to produce a model, the usual 
way is to benefit from compiler technologies. A compiler compiler (e.g. the ANTLR tool 
[Par05]) creates a text processor from a structured text grammar specified with a hierarchy 
of rules. The result is a concrete syntax tree as a trace of triggered rules to recognize text. 
Further hand-coded specialized application needs to visit that concrete syntax tree to pro-
mote it into a model. One of the drawback of that architecture is that both ways (from model 
to text and from text to model) have to be coherent. Moreover, compiler technologies are 
not well suited for concrete syntax representation. Code generation technologies emerged 
when it came to produce code from models, regardless whether target code is actually a rep-
resentation for another language. For instance, one could imagine, as it is the case in 
AndroMDA, to generate Java EJB code out of UML models.

We propose alternatives to both graphical and textual part of this architecture, as 
shown in figure 1.2.

Instead of asking language engineers to learn yet a new language dedicated to repre-
sentation, we propose to let the graphical concrete syntax be defined using a metamodel of 
the same nature as the one that captures abstract syntax. Advantage is that the concrete syn-
tax may be specified in a way that abstracts away representation technology. Concrete syn-
tax is thus easier to understand when one needs to reuse it by rewriting the mapping to 
abstract syntax, or for maintenance purpose. Moreover, the task of developing abstract syn-
tax and concrete syntax may be tackled by different language engineers. Using a metamodel 
to specify concrete syntax also allows better reuse and adaptation of concrete syntaxes by 
merely using metamodeling techniques (such as package merge or model transformation). 
Representation data are organized in a model with a metamodel with no need of a particular 
6
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standard agreement. Still, one needs to design actual representation. There is no agreement 
on a standard language for representation as defined by figure 1.1. That is why we propose 
to apply a template-based approach that would make use of the SVG well agreed standard 
for two-dimensional vector graphics. However, SVG needs to be extended so that it can 
communicate with the model. Finally, model may be viewed by a simple SVG renderer, 
such as Apache Batik. To make it possible to interact with the representation, we propose to 
use predefined interaction components that can be enabled in SVG templates.

Regarding textual concrete syntax, we propose to have a unique specification both for 
analyzing and synthesizing text. The goal here is limited to representing a model of a given 
language into a concrete syntax of that same language, so that we do not need as much flex-
ibility as depicted in figure 1.1. Indeed, the goal is not to cross the boundaries of a language. 
Some technologies (as model transformations) are extensively studied, improved and devel-
oped regarding transforming a model of a given language into a model of another language 
(exomorphic transformations). We have the feeling that it is better approach to work at 
model level rather than at concrete syntax level to bridge languages, since the concern of 
concrete syntax is not vital in this context, and since one could benefit from dedicated tech-
nologies as promoted by MDE-like technologies. As an example, one should better trans-

Figure 1.2: Concrete Syntax for Metamodel-Based Languages Revisited
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form his/her UML model into a Java model, which conforms to the Java metamodel, further 
rendered in text using the Java concrete syntax, instead of directly generating Java code. If 
the target concrete syntax evolves (as it happens when new keywords appear), code genera-
tion has to be maintained while a model transformation that works at the abstract syntax 
level is still valid. To specify such a reversible textual concrete syntax specification, we pro-
pose a new (DSL) modeling language to put into relation a text structure and a metamodel. 
Led by a specification written in such language, automated tools may produce a model by 
analyzing a text, or represent in textual form a model. We define this language by stating its 
abstract syntax in the form of a metamodel. Of course, such new metamodel may be used to 
provide a concrete syntax to itself.

1.3 Contributions

The goal of this thesis is to study the relationships between abstract and concrete syntaxes, 
in the context of metamodeling. We investigate solutions for specifying both textual and 
graphical concrete syntaxes.

The main contributions of this thesis are the following:

• a metamodel for (reversible) textual concrete syntax specification language as com-
panion of the metamodel for abstract syntax (as in figure 1.2 ),

• a mapping specification technique to keep two models synchronized (as in 
figure 1.2 ),

• an algorithm to graphically depict a model using SVG templates,
• a set of concepts and components to interact with models depicted in SVG (as 

depicted in figure 1.2 ).

1.4 Plan

The structure of the document is as follows. In chapter 2, we will emphasize the importance 
of languages in system development. We will also take a tour of the state of the art of MDE-
like technologies applied to language definition and concrete syntax specification. Lan-
guage engineering and engineering through languages is exemplified by Netsilon that will 
be detailed in chapter 3. Netsilon can be compared to a model-driven text generator, and 
will be of inspiration to the solutions we will propose after. We will also see an example of 
SVG text generation using Netsilon that will indicate that SVG templates may be interest-
ing to define graphical concrete syntaxes. We propose, in chapter 4, a metamodel for textual 
concrete syntax specifications that is inspired from concepts of Netsilon. In chapter 5, we 
propose an architecture for specifying graphical concrete syntaxes. All the propositions we 
make will be illustrated by examples. As a conclusion, chapter 6 will outline that further 
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work is still necessary for reaching agile language engineering. To this end, we discuss tech-
niques regarding metamodeling and model transformation thanks to tag-based extension 
mechanisms in appendix A.[AvSB04]
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Language Driven Engineering
Chapter 2:

Language Driven Engineering
The context of this thesis is the definition of methodologies based on models. We named 
such paradigm Language Driven Engineering (LDE) even though different names may be 
found in the literature. We will first present in section 2.1 what is our view of LDE and what 
are its various flavours as published in literature or implanted in tools. Major contribution 
of this thesis is improvement of concrete syntax definition for modeling languages in LDE
methodologies. Nevertheless, problem of concrete syntax definition is not new in computer 
science, and may find some solutions in other technological spaces [KBA02] as presented 
in section 2.2.

Section 2.1.1 was published in the WISME@UML04 workshop 
[FS04], and section 2.2.2 was part of a publication in the Model 
Driven Architecture - Foundations and Applications, First Euro-
pean Conference (ECMDA-FA) held in 2005 [FB05].

2.1 Language Driven Engineering (LDE)

Actors as important as IBM, Microsoft, or the OMG propose a set of techniques and/or 
tools based on models to software development. If many publish a software development 
process pattern with its own name (e.g. MDD, MDE, MIC, MDA, as we will see in 
section 2.1.2 and section 2.1.3), all of them share a certain number of ideas, and offer com-
mon possibilities. We describe in section 2.1.1 what we believe to be most interesting prop-
erties and possible applications of those patterns, commonalities that we will further refer to 
as Language Driven Engineering (LDE) which emphasize importance of modeling lan-
guages. As prescribed by the Domain Specific Language community, LDE promotes the 
usage of various different "small" dedicated languages.

2.1.1 A Method for Methodology

The idea promoted by LDE is to use models at different levels of abstraction for developing 
systems. Thus, the main activity of LDE developers is to design models, just like they used 
to develop code, but led by a more precise methodology. The advantage of having an LDE 
methodology is that one should clearly define each step to be taken before the development 
activity has even started. As a consequence, developers are more or less forced to follow a 
methodology. The LDE methodology should specify the sequence of models to be devel-
oped, and how to derive a model from another one at the abstraction level immediately 
11
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above it. By providing developers with such a methodology, they are supposed to know at 
any moment during the development life cycle what is to be done next and how to achieve 
it.

Applying an LDE process is depicted in figure 2.1. The system under development is 
first described by a model at a very high level of abstraction, i.e., ignoring any kind of plat-
form-related dependencies. This kind of model is intended to capture only the system 
requirements, without specifying how to achieve them; it is the description of the problem. 
Good candidates to play such role are use cases [Jac04] and feature-oriented diagrams 
[KCH+90]. A series of automatic yet interactive improvements may then be performed that 
have the responsibility to make the system description more platform-specific at each step. 
Improvements may be performed by refinement, generation, transformation, refactoring, 
etc. For instance, the system may be expressed once again, but more precisely this time, by 
class diagrams and state diagrams [Har87] to show business behavior. Further on, additional 
information can be added, e.g. to integrate the distribution concern, further complemented 
by directives for the system to work on the CORBA platform [Sil06] (see also appendix A).

 At each step of an LDE process, information related to quality management could be 
integrated as well, such as verification, validation, and test case generation as promoted by 
the V-model [BD99] as shown by figure 2.2. A verification might be the action that checks 
whether a more concrete model does not break the specification promoted by its abstract 
specification model, or vice-versa in the case of reverse engineering. A validation step may 
allow system developers (or even clients) to instantiate prototypes out of intermediate mod-
els in order to test their features before the system is fully implemented. Automatic test case 
generation may produce as outcome scenarios, i.e., sets of messages that are supposed to be 
sent and received by the working system, allowing in this way to test its actual implementa-
tion (e.g. in [NFTJ06]).

One of the most important advantages of using an LDE process is its robustness to 
changes. When a change occurs, be it at the highest level of abstraction (e.g., a change in the 

Figure 2.1: LDE Concept of Successive Improvements
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requirements of the system) or at a lower level of abstraction (e.g., moving to another plat-
form, such as moving from PostgreSQL to MySQL), its impact is well localized and the 
parts that are not touched by the change are immediately reusable. However, the improve-
ments have to be performed once again in order to "update" the changing parts. It becomes 
more problematic when the modeling language changes because such re-improvements are 
not directly possible. Note that re-improvement requires a comprehensive tool support.

In order to apply LDE-inspired processes in large projects, which typically involve 
many developers and tools, several issues have to be addressed, such as model interchange, 
diagram interchange, model versioning, concurrent management, and so on, but these are 
more tool-related issues than methodology issues. Nevertheless, they remain problems that 
will have to be addressed sooner or later [ALPT03].

An LDE process should thus define:
1. how many levels of abstraction are there, and what platforms have to be integrated;
2. what are the modeling notations and the abstract syntax to be used at each level of 

abstraction;
3. how refinements are performed, and what platform and additional information they 

integrate into the lower level of abstraction;
4. how code is generated for the modeling language used at the lowest level of abstrac-

tion, and perhaps even how to deploy that code;
5. how can a model be verified against the upper level model, how can it be validated, 

and how can it generate test cases for the system under development.
The first important technique is metamodeling [AK02], which allows methodologists 

to define precisely a class of models. Metamodeling clearly defines a modeling language by 
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specifying its abstract syntax, eventually along with its semantics. We also believe it is of 
paramount importance to define its possible concrete syntaxes in order to allow conforming 
models to be viewed and modified by different human stakeholders using the different mod-
eling notations that are available in a given view. If we have a closer look, one level of 
abstraction is already defined by the modeling languages to be used. Therefore, defining the 
corresponding metamodels solves already the first two duties of methodologists (points 1
and 2 presented above). Moreover, if the semantics is clearly defined, it is also possible to 
perform the validation part of point 5.

The second technique is model transformation [SK03]. This technique allows meth-
odologists to clearly define relationships between models. Model transformations depend 
only on the metamodels of the related models. Methodologists may use this technique to 
clearly specify the refinements between models. An ideal model transformer should be able 
to perform both forward and reverse transformations, which will allow to propagate 
changes to models at lower, respectively upper, levels of abstraction, enabling the possibil-
ity of automatic synchronizations and re-improvements. Moreover, it gives the possibility to 
verify the more concrete model against the more abstract model, and vice-versa, at any 
moment during the development life cycle. As soon as such bidirectional tool will be avail-
able, point 3 and the verification part of point 5 will be solved as well. Note that some solu-
tions are being studied regarding model refactoring using model transformation [MB05], all 
the same regarding semantics [CESW05, MB06].

For solving point 4, code generators are needed, which would map a model to some 
textual or binary files.

Referring to point 5, an important problem is the current lack of a tool-independent 
solution and of appropriate modeling notations for completely specifying how to generate 
test cases out of models, how to perform validation and deployment, how to depict such 
models, and so on. Moreover, one should be aware that the proposed list of artefacts to be 
delivered by methodologists is not at all complete, and new points will probably have to be 
added as LDE moves along.

Examples of MDE processes and applications are provided in chapter 3 and in 
appendix A. In the following of this section, we detail technologies introduced above.

2.1.2 Published Techniques

LDE is not a well-known technique but our analysis of many different software develop-
ment process patterns promoting models as first class artefacts. In the literature, one may 
find many other TLAs (Three Letter Acronyms) to embrace any model-based software 
development recommendations and paradigms. Most famous terms include Model Driven 
Engineering (MDE) [Ken02], Model Driven DevelopmentTM (MDD) [MCF03] as regis-
tered by the OMG, or Model Driven Software Development (MDSD) [VS06]. Even thought 
they defend the same principles as LDE, we preferred to introduce yet another such acro-
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nym to emphasize importance of the language part. In section 2.1.2, we take a tour of the 
most highlighted techniques of the moment here, namely MIC, MDA, and Software Facto-
ries. In order to be applied, such paradigms need to be supported by tools and standards. We 
will introduce some of the most regarded ones (in section 2.1.3) after some general remarks 
on Domain Specific Languages and the UML generic purpose language.

2.1.2.1 Model Integrated Computing

As from mid-nineties, Model Integrated Computing (MIC) [SKB+95, SK97] promotes 
domain-specific models as primary artefacts to software development. First motivation for 
MIC was to supply complex embedded software engineering [KSLB03] with methodology 
and accompanying tools [LBM+01].

MIC proposes a methodology decomposed in two different phases. The first phase is 
achieved by software and system engineers and consists in analyzing the application 
domain. The goal is to find appropriate modeling paradigms together with a formal model-
ing language definition. An automatic tool can then use those artifacts to generate a domain-
specific modeling environment. That environment is directly usable by engineers of the 
domain to achieve the second phase, that is modeling the desired application.

The GME (Generic Modeling Environment) toolset [Dav03] implements MIC ideas. 
In its last version (6.0), it is integrated in the Visual Studio .NET environment from 
Microsoft, and proposes languages and tools for model and language engineering. However, 
semantics for such developed modeling languages are not directly supported.

2.1.2.2 Model Driven Architecture

Model Driven Architecture® (MDA) [MM03] is an OMG initiative to software develop-
ment publicly available since 2000. Basic idea is to «clearly separate the specification of the 
operation of a system from the details of the way that system uses the capabilities of its plat-
form». To do so, MDA defines a specification architecture structured in Platform Indepen-
dent Models (PIMs) and Platform Specific Models (PSMs).

Such architecture makes it possible to deploy a system on various platforms thanks to 
standard projections, and supports platforms and techniques evolution. Applications may 
interoperate exchanging models. MDA is entirely implemented by means of models and 
model transformations.

To promote MDA, OMG has held an important standardization process regarding 
modeling techniques. It was first proposed to use UML (see section 2.1.2.5) as a universal 
language. However, this approach rapidly appeared far too rigid and the profiling tag mech-
anism (see section A.1.1 on page 131) was proposed to add new notions to the UML lan-
guage. As these extensions grew, MDA community opted for a domain specific language 
approach (see section 2.1.2.4) and OMG proposed new standards to modeling language def-
inition and manipulation (see section 2.1.3).
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2.1.2.3 Software Factories

Software Factories [GSCK04] are Microsoft’s vision to LDE. They were inspired by assem-
bly lines in industry. Main inspiring ideas are the following:

• Assembly lines usually manufacture only one kind of product with small variations 
points. An example is the automotive industry where a factory produces one kind of 
car, with some possible variations in the color, or option combination.

• Workers are often specialized. If one can meet a worker with a broad scope of activi-
ties, those activities never cover the full assembly line.

• Tools are very specialized and automated; they cannot be reused in other assembly 
lines than the one they were conceived for.

• Components to be assembled or tooled often come from third parties. Automotive 
assembly lines usually only assemble pieces that are normalized or produced in other 
factories.

These principles have long proven their effectiveness in manufacturing hardware product 
families. Software factories propose to apply these characteristics to software development. 
Following the first and second points, software suppliers and software developers should be 
highly specialized. Third point suggests that (modeling) tools should also be specialized 
(i.e. domain specific), including (modeling) languages, wizards, and transformations. Last 
point motivates the (re)use of off-the-shelf components. The Microsoft Visual Studio .NET 
2005 IDE now features these ideas and propose an extensible framework that may be con-
figured to scope a specific domain.

2.1.2.4 Domain Specific Languages (DSL)

Domain Specific Languages [vDKV00] are small languages with a rather poor number of 
different abstractions as they are used only in a very specific technological space by a mod-
est number of users; that’s why they are often referred to as micro-languages or little lan-
guages [Ben86]. If they usually lack flexibility, they are very adapted to the problem they 
are designed for, being also more readable for specialists of the domain than general pur-
pose languages. Many illustrative examples of how to design and use DSLs are available in 
the literature, for instance in [KMB+96].

LDE extensively promotes the usage of DSL [CESW05, KP02]: for sake of produc-
tivity and understandability, language of models should be adapted to the problem domain 
and the considered level of abstraction. Note that for a given level of abstraction, many dif-
ferent DSLs may be used. This idea is especially promulgated by the Domain Specific Mod-
eling community.

One of the problem with DSLs is that, because of their relatively restricted communi-
ties, it is economically hard to develop and maintain corresponding integrated environments 
(IDEs) or CASE tools of high quality. This is starting from this idea that many CASE tools 
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generators started to appear like GME [Dav03] (see section 2.1.2.1), DOME [Hon92], 
MetaEdit [Poh03], XMF-Mosaic [CESW05] from Xactium, or more recently DSL Tools 
[GSCK04] from Microsoft. All these tools are of great interest as they feature a graphical 
concrete syntax definition facility, often separate abstract (domain data) from concrete syn-
tax (surface language), and sometimes permit to define textual concrete syntax (like for 
Xactium).

2.1.2.5 UML

The Unified Modeling Language (UML) [AAB+07] is a general purpose language stan-
dardized by the OMG. A first draft version was available in 1995 (Unified Method v0.8). It 
was born from a unification concern regarding object-oriented modeling languages. Indeed, 
at that time, many had developed modeling languages to model object-oriented applica-
tions. Not only those languages targeted the same requirements, but they featured the same 
concepts too (e.g. objects, classes, association, use cases, or subsystems). Fragmentation in 
the languages, and consequently in the tools was a brake on the development of modeling 
[Iiv96]. UML is a fusion of some of the most interesting languages of that time (OMT, 
Booch, OOSE, Harel’s statecharts, etc.). One can say objectives are reached as its success 
became rapidly widespread and UML is now the de facto standard for modeling object-ori-
ented applications.

UML is actually a set of coherent modeling notations. One may capture requirements 
using use case diagrams and scenarios, data structure using class and object diagrams com-
plemented with constraints written in OCL [ABF+06], message side effects using state-
charts, hardware and software architecture using deployment and components diagrams, 
etc. Possible motivations to use UML are documentation, communication between actors of 
the project (e.g. architects, developers, testers, clients), prototyping (in case of executable 
UML models), abstraction (permitting, trough code generation, improvement in productiv-
ity compared to code handwriting - as shown in chapter 3), or merely because it is the nota-
tion prescribed by the method chosen by the project manager. It is important to note that 
UML is a notation, and not a methodology, even though many methodologies use UML as a 
notation (e.g. RUP [Kru03] or Fondue [SS99]). Appendix A will provide an example of a 
system specified using UML class diagram notation, extended with profiles and clarified by 
OCL constraints.

Even though UML extensively promotes modeling for software engineering, one can 
say it breaks LDE principles in its original philosophy. Indeed, LDE promotes language 
proliferation while UML targets an universal notation for modeling. If UML proved it is 
well suited to model general object oriented applications, its lacks comprehensive concepts 
while diving into details of domain specificities. To supply UML with more flexibility, 
UML proposes UML profiles as a tag mechanism so that one can add such missing con-
cepts.
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2.1.3 Key Technologies

One of the key points in productivity gains of LDE techniques is that they are supported by 
automation tools. We complement our description of LDE with the description of those key 
technologies as identified in section 2.1.1, that are metamodeling, model transformation, 
code generation, and concrete syntax specification.

2.1.3.1 Metamodeling

Metamodels are models about models. Many different definitions may be found, but in the 
context of this thesis, we will consider metamodels as the specification of the abstract syn-
tax of a language, that is the lexicon of concepts of the languages (vocabulary), properties 
of those concepts, and relations between the concepts (taxonomy).

A metamodel is the description of a language through its concepts. A metamodel is 
described by mean of a language (a metamodeling language). Thus a metamodeling lan-
guage, which has an abstract syntax, has a metamodel. The latter class of metamodel is 
called meta-metamodel. As a meta-metamodel is a mean to specify abstract syntax of lan-
guages, a meta-metamodel must be able to describe its own abstract syntax, thus breaking 
the necessity to create other models adding yet other meta prefixes.

We show here an illustrative example for what is described above, known in the MDA 
terminology as the 4-layer architecture. In this terminology, the modeling level is named 
M1, the metamodeling level M2, and the meta-metamodeling level M3. One may simplify 
the problem by considering only two level at same time (Mx-1 and Mx): an object level and 
a class level. The following example makes use of the UML object diagram and class dia-
gram, respectively, to describe those two levels. The goal of the example is to describe an 
abstract syntax for a relational database design language. A concrete sentence of the lan-
guage is given in figure 2.3. A Teams table lists teams with the column name, which is a 
primary key. Table Match consists of Score1 and Score2 columns, in addition to Team1, 
Team2, Place and Date primary keys, Team1 and Team2 being foreign keys referencing 
a line in table Teams according to name value.

Figure 2.4 represents the abstract syntax of the relational database description lan-
guage. Concepts of the language are DataBases, Tables, and Columns. A DataBase
owns Tables, and a Table owns Columns. All these concepts have a name, and a column 

Teams

PK name

Match

PK,FK1 Team1
PK,FK2 Team2
PK Place
PK Date

 Score1
 Score2

Figure 2.3: M1: A Relational Database Language Sentence
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has a type (i.e. text, number, or even column in case of foreign keys). Figure 2.5 shows an 

excerpt of the abstract syntax tree for the sentence shown in figure 2.3 as occurrences of 
concepts of figure 2.4 using the UML object diagram formalism. We can see here that all 
information may not be explicitly represented in the concrete syntax, following the example 
of the DataBase name or types of Columns. Experts in metamodeling may have noticed 
that the M1 abstract syntax graph (ASG) of figure 2.5 is represented as objects conforming 
to the M2 (meta-)classes defined in figure 2.4.

As said above, to define metamodel as we did in figure 2.4, we used a metamodeling 
language, and figure 2.6 may be seen as a concrete representation of occurrences of con-
cepts of a given metamodeling language with which can be described concepts of meta-
class, meta-attribute, etc. This follows exactly the same pattern as before, shifted by an M-
number. One such metamodeling language as standardized by the OMG in the context of 
MDA (see section 2.1.2.2) is MOF [ISO05, ACC+06], a simplified variant of UML class 

Table

NamedElement

name : stringname : string

DataBase

A_table_dataBase

table

0..1 *

dataBase Column

isPrimaryKey : boolean

TypedElement

DataType

Element

isPrimaryKey : boolean*

column

A_column_table0..1

table

typedElement

A_type_typedElement

0..1 type

*

Figure 2.4: M2: Relational Database Language Abstract Syntax

dataBase

dataBase

A_table_dataBase

Championship:DataBase

name=Championshipname=Championship

Teams:Table

name=Teams

name:Column

isPrimaryKey=true
name=name

Match:Table

name=Match
Team1:Column

isPrimaryKey=true
name=Team1
isPrimaryKey=true

name=Teams
isPrimaryKey=true
name=nametable column

A_column_table

name=Match

table

table

A_table_dataBase

name=Team1

type

typedElement
A_type_typedElement

A_column_table

table column

Figure 2.5: M1 conforming to M2: Figure 2.3 as an ASG (Excerpt)
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diagrams. We show in figure 2.7 an excerpt for MOF 1.4 (corresponding to level M3), and 
in figure 2.6 an excerpt of abstract syntax graph for metamodel (M2) as instances of MOF 
1.4. Although not shown here, concepts of M3 may be represented using M3, e.g. MOF 

may represent concepts of MOF. As a consequence, there is no need to apply the Mx-1/Mx 
conformance pattern again and again. In this example, we didn’t show an example for M0, 
the real world, but it is again the same pattern. One may think of most interesting matches 
of his/her favorite sport as M0 sentences, which are instances of M1, represented by lines in 
a relational database formatted as prescribed in figure 2.3.

The success of MOF as a metamodeling language is as broad as it is hard to find a 
really different approach nowadays. Actually, if one can find alternatives to the 4-layer 
architecture [Hof79], other tools and researches are subsets and/or extensions to MOF as 
EMF [Ecl05], Coral [Por03], KerMeta [MFJ05], or XMF-Mosaic [CESW05]. Even meta-
modeling tools which neglected abstract syntax before are aligning themselves to the stan-
dard, as GenGED [Bar98] which evolved into Tiger [EEHT05]. However, MOF cannot 
pretend being the historical metamodeling language, and tools may use older modeling lan-
guages or even traditional programming language. Two such examples are AToM3 [dLV02], 
which uses Entity-Relationship diagrams and/or Python, and FAMIX [DMNS97], which 
introduced a language-independent metamodel that could be indifferently implemented in 
SmallTalk, C++, Java, or Ada. Still, we stick to the object paradigm as a mean to describe 
concepts.

If metamodeling languages permit to describe abstract syntax of modeling languages, 
one need implementations to store models. Politic applied by most approaches (MOF-Based 
repositories, EMF, AToM3) goes beyond code generation. Actually, those tools generate a 

:Class

name=NamedElement

:Class

name=Table

:AssociationEnd

container

name=Table

supertype

Generalizes

type

contents

container

:Class

name=DataBase

:Association

name=A_table_dataBase

:AssociationEnd

name=NamedElement

name=A_table_dataBase

subtype

contents

container

Contents

name=DataBase
type

IsOfType

subtype

supertype

Generalizes

Contents

:Class

name=Element

:Attribute

name=name

String:DataType

name=name

Contents

contents

IsOfType
type

Generalizes

subtype

name=Element
supertype

IsOfType

Figure 2.6: M2 conforming to M3: Figure 2.4 as a MOF ASG (Excerpt)
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storage artefact for models with a specific API to make it possible to manipulate and/or lis-
ten changes in the model, independently from the storage technology. For instance, some 
tools, like MDR [Sun05], can be configured to target either in-memory hashtables, in-file b-
trees, or relational databases, while offering the same data access API. These software com-
ponents, together with their accompanying API, are called model repositories. The MOF 
standard defines precise transformation rules from MOF metamodels to CORBA APIs, 
which de facto standardizes CORBA-based model repositories. JMI [Jav02] is another stan-
dard for transforming MOF metamodels into raw Java APIs, which is in use in numerous 
tools like MDR. Model repositories are at the core of modeling tools and are most of the 
time a requirement for using model transformations, if not included in model transformation 
engines.

Moreover, to exchange models, the OMG issued the XMI standard [ACD+05], which 
is a way to represent a model in a textual XML file. XMI is flexible enough to comply to 
any metamodel as soon as this latter is described using MOF. Actually, a metamodel speci-
fies an XML schema (DTD or XSD) of XMI representations of conforming models. 

Model

Element

Namespace

Generalizable

Element

Feature

Typed

Element

Classifier

Data Type

Behavioural

Feature

Structural

Feature

Import

Package

ClassAssociation

Tag Constraint

ParameterStructure

Field

Constant

ReferenceException

Association

End

AttributeOperation

Structure

Type

Enumeration

Type

Collection

Type

Primitive

Type

/Depends On

Generalizes

Contains

Aliases

Can Raise

Is Of Type

Attaches To

Constrains

Refers To
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0..*

0..*

0..*

ordered

0..*

*..0*..0

0..*

0..*

1

1..*

0..*

1..*

0..*

0..*

1

0..*

0..*

1

0..*0..*

ordered

ordered

ordered

Alias Type

Figure 2.7: M3: MOF 1.4 (© OMG)
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Because this technique is dedicated to tool communication and is rather hardly readable by 
humans, OMG also issued HUTN [DDF+04], which follows equivalent principles, but 
using a more human-readable grammar.

For abstract syntax to be rendered as precisely as possible, metamodeling standards 
and tools often propose to complement metamodels with constraints. Constraints may be 
expressed using in any sort of language capable to query a model, for instance Java code 
that uses JMI interfaces, or Python in the case of AToM3. MDA proposes OCL [ABF+06], a 
side-effect free language dedicated to navigate class-based models, regardless they are 
MOF metamodels or UML class diagrams (see section 2.1.2.5).

2.1.3.2 Model Transformation

Model transformation is the second important technique to LDE as underlined in 
section 2.1.1 and in [SK03]. Many survey of model transformation techniques and stan-
dards are available, for instance in [CH06].

Model transformations make it possible to build bridges between modeling languages 
for dedicated purposes. They may be compared to compilers in traditional language engi-
neering as they can translate models of a certain metamodel into models of other metamod-
els, for example transforming a class model into a relational model [MFV+05]. However, 
their usage is much broader as they can cover a full exploration and manipulation of mod-
els. For instance, one may compute metrics about models (e.g. in [VBBJ06]), perform 
model refactoring (e.g. in [MB05]), or precise models according to a platform (e.g. 
section A.2 on page 134).

Regarding model transformation, different approaches may be taken. First, as models 
may be represented by XML files, many used the XML transformation language XSL. If 
this was a solution at the early times of model transformation, its has shown neither to be 
scalable nor agile from a software engineering point of view. Another way to transform 
models are transformation languages which are dedicated to a given metamodel, following 
the example of J from Objecteering that is dedicated to UML model transformation. If they 
particularly fit to transform a certain type of model, since one may not need to know the 
underlying metamodel to write a transformation, they cannot be applied to other metamod-
els and are thus not general solutions to model transformation. A third way to transform 
models is to take advantage of model repositories as described in previous section: as a 
model repository proposes an API for model manipulation, one may use a general language 
(e.g. Java or Python) to access the API and thus manipulate models. Last technique is to use 
a general purpose transformation language, i.e. a DSL whose domain is model transforma-
tion.

Regarding that last possibility, OMG is establishing the Query/View/Transformation 
(QVT) standard [CCD+06]. Actually, QVT proposes various solutions to transformation. It 
proposes compatibility standard to make use of non-QVT transformations, it proposes two 
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declarative languages based on pattern matching as inspired from graph grammars (see 
section 2.2.2.1), and an imperative language. Moreover, an impressive number of languages 
and associated tools appeared those last years. Examples are ATL [BDJ+03], the Borland 
Together tool [Fon06], MTL [fRiCSI05, VJ04], MOLA [KBC04], and BOTL [BM03].

Another way to transform models has been proposed. One of the KerMerta’s metalan-
guage goal is to add executability into metamodels [MFJ05]; as a side effect Kermeta is able 
to transform models whose metamodel is defined using KerMeta [Fle06, MFV+05].

2.1.3.3 Code Generators

Resulting artefacts of the application of an LDE process are models. However, models are 
rarely usable as is and there is often a need for a translation to artefacts that are directly 
understandable by execution platforms. An example of such artefact is program code, 
which can be compiled into an executable file. To do so, there exist several code generators 
from models.

Apart from modeling tools dedicated to only one sort of model, and featuring a spe-
cific code generator wired to a certain platform, most code generators has applied a tem-
plate-based generation. This technique makes it possible to specify, for each metaclass, 
some text in which are interleaved queries to the model (repository). One may compare 
such technique with dynamic web applications, written in scripting languages as JSP or 
ASP, which are HTML templates in which are interleaved queries to a database. Examples 
of tools that apply such template-based technique, and which are taking advantage of the 
Apache Velocity template engine, are Fujaba [GSR05], and AndroMDA [Boh07] that both 
offer an evolved template management (through cartridges). Other examples of tools offer-
ing a specific template syntax are Acceleo [Obe07], XMF-Mosaic [CESW05], and openAr-
chitectureWare [Voe06]. OMG, in the context of MDA, is studying the MOF2Text standard 
to code generation [CIM+06] that is also based on text templates interleaving instructions 
and OCL expressions. Even though MOF2Text Request for Proposal proposed bidirectional 
specification (from model to text and back again), its current status allows only one way 
generation (from model to text).

Parallax [SS05] is a code generator dedicated to UML models. Parallax offers an 
interesting management of platform specificities (crosscutting concerns). Actually, a code 
generator is a simple program that builds an abstract syntax tree of the target language (e.g. 
Java). Nevertheless, when the model has to be adapted to a specific needs (e.g. distribution), 
for instance thanks to a profile, code generation facility needs to be reconsidered to deal 
with that new profile. Parallax promotes the usage of aspects [KLM+97] to modify the gen-
eration process. To solve that kind of problem, openArchitectureWare [Voe06] also offers 
an aspect-oriented mechanism to adapt code generation, but this time directly at template 
level.
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Problem with code generation is that tools tend to integrate platform specification 
within the generation, for instance a generator that transforms a UML model into an Java 
EJB application. We believe that it is not an agile approach because one need to deal with 
two different concerns at same time. On one hand, one need to consider how concepts of the 
source language (e.g. the UML metamodel) should be mapped into concepts of the target 
language (e.g. the Java metamodel). On the other hand, one need to deal with concrete syn-
tax of the target language (the Java textual grammar). A better approach could be to make 
an additional model transformation and then a code generation. In this case, model transfor-
mation works at concepts level, and code generation does not crosses anymore the language 
boundaries. For instance, one may better propose a model transformation to distribute his/
her UML model, then a transformation to an EJB model, and finally a code generation to 
Java/EJB. Going one step further with this philosophy, one may regret the lack of bidirec-
tional code generation. Indeed, if one introduces metamodels for common languages (as 
Netbeans did for Java [Net05]), it may be interesting to be able to generate code out of the 
model, but also to get the model from some source text.

2.1.3.4 Graphical Concrete Syntax

To define a language in general, and a modeling language in particular, one need to specify 
concepts (i.e. abstract syntax, that is metamodel in the case of modeling languages), seman-
tics, and concrete syntax. A concrete syntax is a surface language that acts as an interface 
between the instances of the concepts, and the human being supposed to produce or read 
them. Concrete syntax may be textual or graphical, but is often a mix of both.

Up to a recent time, graphical concrete syntax was hand coded in diagram editors 
using two-dimensional drawing libraries such as Swing or GME. Problem with this 
approach was that it was hard to read for humans, and that it was also long to develop and 
maintain.

Most solutions to graphical concrete syntax definition on top of a metamodel are 
based on ad-hoc symbol editors, following the examples of AToM3 [dLV02], GME 
[Dav03], or MetaEdit [Poh03]. For each representable element of the metamodel, one 
defines an icon and indicates properties to be displayed. Such tools make a clear distinction 
between entities and relations, thus making possible to design only a nodes-and-bounds 
type of graph, so called connection based language (see section 2.2.2).

Other solutions propose to map the abstract syntax to a graphical language described 
as a metamodel, as proposed in [DV02]. For instance, XMF-Mosaic [CESW05] proposes to 
write a bidirectional transformation to a metamodel which has a graphical representation 
semantics, with squares, lines, etc. A similar approach does not require a model transforma-
tion, but rather models that capture information regarding abstract syntax representation 
metamodel mapping (see figure 1.1 on page 5). Topcased [VPF+06], or GMF [Ecl06] are 
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such tools, so does Tiger [EEHT05] even though representation metamodel is not explicit. 
Still, all these solutions stick to connection based graphical languages.

When it come to concrete modeling, concepts are manipulated by mean of their repre-
sentation. To do so, one needs to define how icons can be manipulated. As we will discuss 
in more details in section 2.2.2, graphical models, in contrary to textual specifications, are 
built interactively by the modeler who sends events to the modeling tool, e.g. to create a 
modeling element, or to move it. Actually, numerous DSL tools, based on concrete syntax 
description, offer standard behavior to defined representations (e.g. to create, delete, move, 
or connect icons). Other approaches take advantage of graph grammars to describe such 
behaviors [BGdL06], following the example of Tiger or AToM3.

One should not confuse graphical concrete syntax specification with diagram inter-
change, as XMI-DI [ADG+06], which is a standard of the OMG. XMI-DI enters the cate-
gory of Representation Data as shown in figure 1.1 on page 5. If graphical concrete 
syntax deals with concrete representations of concepts given by a metamodel, diagram 
interchange is only a mean to store graphical information of a diagram. Actually, diagram 
interchange is not a mean to describe how abstract and concrete syntax relate. On the con-
trary, it is a mean to tell, for a given model, which elements of the abstract syntax tree are 
represented, and what are the chosen variations in the representation (e.g. place, size, color, 
provided that information is not reflected in the abstract syntax graph). To summarize, if 
concrete syntax makes explicit all possible representations for a given concept, diagram 
interchange makes explicit what is the chosen variant in representation for rendering con-
cept instances.

Regarding textual concrete syntax, current solutions mix code generation with manual 
text parsing, both of them having to be consistent, even though some tools may help in pars-
ing texts to create models [HRS02, CESW05]. We do not consider automatic syntax gener-
ation, as in MOF2Text or [AP04, GRS06] since concrete syntax must follow specific rules 
in its form. We are only aware of TCS [JBK06] that recently offered a comparable approach 
to the one we will describe in chapter 4 and that we studied in [FSGM06] and in [MFF+06].

2.2 Traditional Concrete Syntax Engineering

This thesis attempts to give some preliminary answers to concrete syntax definition for 
modeling languages, answers that will be inspired by solutions outside the LDE community. 
Textual and graphical definition of concrete syntax are technical spaces by themselves and 
deserve to be introduced in section 2.2.1 and section 2.2.2. We also introduce in 
section 2.2.3 the SVG standard, which will be the basis for a solution to graphical concrete 
syntax specification.
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2.2.1 Traditional Textual Language Engineering

Compiler construction was one of the very first way abstraction appeared in computer sci-
ence: in early 60s, it was a revolutionary idea to make an automatic translation from a 
"computer scientist readable" textual specification to computer understandable binary code. 
Productivity gains triggered by simplifying the program specification led to extensive 
research on finding the best possible abstraction for programming a computer (Algol, For-
tran, C, etc.). Compiler construction techniques evolved as the number of experimented lan-
guages increased.

Among the most interesting results of compiler construction experience are genera-
tive grammars [Cho56], attributed grammars [Knu68], and Backus Naur form (BNF) 
[BBG+60], improved by the Extended BNF (EBNF) [Int01], which are all able to describe 
structured texts. Those results are used in compiler compilers, i.e. compilers that take as 
input an EBNF-like grammar, and which generates a program able to analyze a text con-
forming to that grammar. Such compiler compilers are Lex/Yacc [Joh79], or ANTLR 
[PQ95], and nowadays their success is as universal as that they are taught in universities.

Their general principles are the following. First, one should describe so called termi-
nal symbols, such as numbers, comments, keywords, etc., in a lexer grammar. From this 
grammar, the compiler compiler generates a lexer, that is a program which takes as input a 
text and transforms it into a string of such defined symbols (tokens) - this phase is called the 
lexical analysis. A token is associated to its type (Number, Comment, Keyword, etc.), a 
text (e.g. "12.85" for a Number), and eventually a location (e.g. a line and a column). As a 
second step, a parser should be defined usually in the form of EBNF-like rules (an 
expression is either an addition, or a subtraction; an addition is a Number ter-
minal, a terminal +, and another Number terminal). Again, the compiler compiler generates 
a program. This latter program, the parser, takes as input the token stream obtained from the 
lexer and analyses it according to the grammar - this phase is called syntactic analysis. The 
outcome is a concrete syntax tree that organizes the tokens into a hierarchy following the 
order of triggered rules. Most of the time, actions can be embedded in the parser rules so 
that one may build an abstract syntax tree that may be later walked through to generate code 
(e.g. if parser analyses an addition, it should build an addition object and associate the cor-
responding operands as analyzed from terminal numbers). Unfortunately, abstract syntax 
tree construction (semantic analysis) and code generation are poorly automated tasks and 
should be programed using general purpose languages.

Parsers may be classified in two categories. Top-down parsers (LL parsers - from Left 
to right using Leftmost derivation) attempt to trigger the topmost rule (the main rule), and 
move down into grammar rules. For instance, if expression is the topmost rule, an LL 
parser will trigger the rule and then choose among the alternatives. On the contrary, bottom-
up parsers (LR parsers - from Left to right using Rightmost derivation), also known as shift-
reduce parsers, will store tokens into a stack up to a rule is matched. For instance, it is only 
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when the token stack contains a Number, a +, then another Number, that the addition
rule then the expression rule will be recognized.

Parsers usually drive their associated lexer, that is, they consume token at same time 
they analyze rules. This raises an important drawback in that some rules may be conflicting. 
For instance, at the moment an LL parser consumes a Number terminal, it cannot decide 
whether the triggered rule should be addition or subtraction. To solve that problem, two pol-
itics are possible. Lookahead parsers can analyze more than one token at a given moment. 
In the operation example, the parser can decide between addition and subtraction looking at 
the next token, that should be either a + or a - terminal. Depending on the grammar com-
plexity, that number k of token to be accessible in advance is different, but the more impor-
tant that number is, the more complex and the less efficient the parser is. The parser is said 
to be LL(k) or LR(k). An usual value for k for common programming languages is 3. Back-
tracking provides a second solution to the conflicting rule problem. Actually, in case of con-
flicting rules, such parser chooses an alternative and continue analysis "hoping" the right 
alternative was chosen. In case an analysis fails, the parser goes back to its last choice and 
takes another alternative. For instance, such parser will chose the addition rule each time 
it will encounter a Number terminal. If the next token is a - terminal, the addition rule 
fails, and the parser backtracks to state at the time of the choice and starts again analysis 
using the subtraction rule alternative. Note that both lookahead and backtrack technolo-
gies are compatible.

A thorough description of compiler construction may be found in [ALSU06].

2.2.2 Graphical Language Engineering

Almost each of today’s modeling languages comes with a graphical representation in order 
to improve readability and usability. Thus, the concrete syntax of modeling languages 
should be defined in terms of a visual language. For this reason, we summarize here the rel-
evant basic terms from visual language theory.

A visual language describes a set of visual sentences which in turn are given by a set 
of visual elements. A visual element can be seen as an object characterized by values of 
some attributes. It depends from the language which attributes are important for a graphical 
element1, some of the most frequently used attributes are shape, color, size, position, attach 
regions. We will further refer to such data as representation data in the rest of the disserta-
tion.

Visual elements are arranged in the two- or higher-dimensional space. For some lan-
guages (which are classified in [CLOP02] as geometric-based languages) the position of 
visual elements is an important information, e.g. a sentence consisting of a circle and a 

1. There is a common classification of attributes into graphical, syntactical and semantic attributes. Only the 
first two classes of attributes are relevant for our approach because semantic attributes are already captured 
by the abstract syntax definition.
27



Graphical Language Engineering
square where the circle is placed at point (1,0) and the square is placed at (2,0) is another 
sentence than the sentence where the square is placed at (1.0) and the circle is placed at 
(2,0). However, for real-world languages, the absolute coordinates are much less important 
than the spatial relationships between graphical objects. Some of the most frequently used 
spatial relationships are RIGHT, UP, CONTAIN, OVERLAP (see [CLOP02] for a more com-
plete list). It heavily depends on the visual language which of the spatial relationships are 
considered to be important. An example is the chessboard language as introduced in 
section 5.2.2 on page 87. Sometimes, languages are geometric-based even if it seems that 
the visual elements can be arranged freely. One example is the language of UML class dia-
grams. At a first glance, rectangles for classes can be placed freely at any point in the space. 
For instance, a diagram consisting of two rectangles labeled with A and B would always be 
read as the same sentence no matter where the (rectangles for) class A and B are placed. 
However, there is one exception from this rule: If - let’s say - the rectangle for B appears 
completely inside the rectangle for A, then the class A is read to be composed of class B. 
Thus, the spatial relation CONTAIN is important to define the visual representation of class 
diagrams whereas the relations RIGHT, UP, etc. do not play any role here. 

In addition to geometric-based languages, there is another group of languages called 
connection-based languages. This languages allow the visual elements to be completely 
freely placed in the space and, thus, none of the spatial relationships is important when a 
sentence of such languages has to be read. Instead, it is an important information whether 
two elements are connected by a connector (usually a line, polyline, curved line) or not. 
Connectors start and end in special regions of visual elements, so called attach regions. A 
visual object can have one or more attach regions which can sometimes collapse to attach 
points. As already mentioned, visual language definitions formalize the attach regions of an 
visual element just as attributes of it. This abstracts from the problem to define where an 
attach region is exactly located in respect of the visual element (e.g. in the lower right cor-
ner). However, there are symbol editors available, e.g. as part of VLDESK [CDP04] or 
AToM3 [dLV02], that allow to exactly define attach regions for a visual element as well as 
to solve the very similar problem of defining a shape for it. In fact, most real-world visual 
languages show characteristics of both geometric-based and connection-based languages 
and are thus called hybrid languages.

To summarize, a visual sentence is given by a set of visual elements together with 
their values of (language dependent) attributes and information on holding (language 
dependent) relationships between them. The definition of a visual language might restrict 
the possible relationships between elements and, for instance, say that the rectangles repre-
senting a class A must contain the rectangles for all classes A is composed of.

Finally, visual elements can completely hide other elements. Thus, by looking on the 
visual sentence, it is impossible to distinguish between the visual sentence containing the 
hidden element from a sentence where the hidden element is dropped. This problem can 
easily be fixed by introducing in the language definition a spatial relation HIDDEN_BY and 
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adding a constraint, that visual elements should never hide completely another visual ele-
ment. 

2.2.2.1 Graph Grammars

As explained above, a diagram, i.e. a visual sentence, is a set of parametrized component 
instances, together with spatial relationships (RIGHT, UP, CONTAIN, OVERLAP). Thus, a 
diagram may be seen as a directed graph and may be defined and transformed using graph 
grammars.

Graph grammars [Nag76, Göt82, EEKR99] (and graph transformations) are construc-
tive approaches to graph evolution based on pattern matching and have its roots in textual 
language engineering (see section 2.2.1), and was source of inspiration for QVT (see 
section 2.1.3.2). A graph grammar is a collection of production rules. Production rules, 
which may be attributed, are composed of a left-hand side, which provides a pattern to 
match (i.e. search criterion) in the graph, and a right-hand side, which describes the modifi-
cations to apply to the matching region.

Graph grammars are able to define formally visual languages [Min02]. The same 
technique may apply to define how to construct a valid language sentence (i.e to add a new 
element to a diagram) and to define what is the semantics of the language (i.e. to make a 
system state evolve according to a language sentence) [And96]. To make the sentence 
evolve corresponds to triggering one of the rule in the graph grammar: a user interaction, 
like adding a new element, connecting elements together, renaming an element, changing 
colors, etc., actually correspond to a production rule triggering. The interested reader may 
find an introduction and some examples of visual language definition in [Jon90]. Moreover, 
some tools implement those ideas as GenGED [Bar98] and AToM3 [dLV02].

Triple graph grammars [Sch94] are an extension of graph grammars to keep consis-
tent manipulated data. Production rules contain intermediate rules, the correspondence pro-
duction, that relates left to right hand sides. This allows to maintain correspondence data 
that are necessary to keep source and target model consistent according to the grammar 
when one of the two model changes. Unlike simple graph grammars, triple graph grammar 
allows one to separate clearly abstract syntax from concrete syntax: the grammar states how 
the abstract syntax tree may be represented by the concrete syntax tree; if the concrete 
(respectively abstract) syntax tree is changed, the abstract (respectively concrete) syntax 
tree is automatically changed accordingly.

2.2.3 Scalable Vector Graphics

Scalable Vector Graphics (SVG) [JN05] is the only open standard for describing two-
dimensional vector graphics. SVG is not related to a platform, thus it can be in use on plat-
forms as various as computers (regardless of the operating system) or mobile devices. The 
scope of standard is very broad makes it possible to draw basic shapes (circles, rectangles, 
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Bézier curves, etc.), to integrate and mix raster images, etc., with a large number of possible 
customizations (e.g. animation and transparency).

One of the most important characteristic is that SVG is an XML [BPSM+06] dialect. 
The eXtensible Markup Language (XML) is another open standard for structured data inter-
change based on text files. As a consequence, as any XML specification, SVG may be 
manipulated by the Document Object Model API (DOM) [HHW+04]. The DOM API 
allows to access and alter XML data using languages (like Java) or scripts (like JavaScript). 
This means that a script or a program may manipulate an SVG document that an SVG inter-
preter will be in charge of rendering dynamically.

DoPIDOM [Bea06] is a framework for developing DOM-based components able to 
manipulate an SVG document at same time the SVG document is rendered. It is based on 
Batik [Apa], and organizes DOM components in two categories: query consumer for navi-
gating the SVG document and action producer for altering the SVG document.

2.3 Conclusions

LDE is a set of model-based techniques to software development. Main artefacts of a soft-
ware development process are models, not only used for documentation purposes, but also 
as development artifacts. The process is stepwise, each step consisting in adapting result of 
the previous step (a model) with details of the deployment on execution platforms, follow-
ing the examples of RUP [Kru03] and B [Abr96]. Input and output models are described by 
metamodels, which represent the abstract syntax of the modeling language, and are related 
by model transformations, which help in the improvement. First step is to describe the 
desired system into a model, and last step consists in generating code to be deployed in an 
execution platform. Beside clear advantage of the improvement process (e.g. adaptation to 
changes, traceability, etc.), the LDE model-based approach promotes to use the right (mod-
eling) language for the right purpose, thus avoiding to use a too large or inappropriate lan-
guage, without that necessity to stick to only one general purpose language for the whole 
process.

Thus, to define such a model-based process, methodologists need to clearly specify 
those languages, and developers need to correctly understand them. Moreover, to scale, 
such approach must be supported by comprehensive modeling tools. Drawback is that those 
tools require a lot of energy in development, and are only designed for a limited community.

To correctly specify a language, one need to define its abstract syntax, its semantics, 
and its concrete syntax. Abstract syntax may be given by mean of a metamodel, which 
allows to build model repositories (responsible for model interchange), which are the pillars 
for those bridges that are model transformations. Some solutions for semantics are already 
around (e.g. using set theory, or model transformations), though intensive research is still on 
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the way [HR04]. However, we found that concrete syntax definition still lacks maturity in 
the LDE community.

Regarding graphical concrete syntax, techniques and tools are already around, as 
graph grammars. Some has even ported results of this technological space to the LDE com-
munity (e.g. [EEHT05]). Moreover, model-based technology evolved rapidly last years 
(especially since the start of this thesis). Nevertheless, we feel that these solutions, if they at 
nice at tooling, still lacks universality and are too imperative to serve as specifications.

Regarding textual concrete syntax, the situation is rather worse and has not gained the 
attention it deserves. Indeed, one need to specify consistent code generation and text pro-
cessors using poorly specialized tools. However, there exist solutions in another technologi-
cal space, namely compiler compilers, that may help in finding a comprehensive 
specification to concrete syntax.

In this thesis, we propose solutions for graphical and textual concrete syntaxes that we 
feel could be used as specifications.

In next chapter, we continue our presentation of LDE with an example of an LDE pro-
cess definition and application. Another example is given in section A.2 on page 134. [NWHR06]
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Chapter 3:

Netsilon: LDE Example 
and Embryonic Solution

Netsilon is a web application modeler and generator. Construction of the tool has followed 
the LDE principles to support an LDE methodology for web application engineering. In 
addition to reusing a subset of UML, it integrates notably two new DSLs, one graphical (the 
Hypertext Model) and another one textual (Xion). We developed Netsilon in a small com-
pany, ObjeXion Software, between 2001 and 2002, using technologies of that time: model 
repositories are hand-coded using the java language and model transformations are java 
programs. After introducing general remarks about web applications in section 3.1, we give 
general principles of Netsilon in section 3.2 and implementation insights in section 3.3 as 
an example for language engineering. We also show that Netsilon may be seen as a generic 
code generator able to produce some text from a model. An example, developed in 
section 3.4, shows generation of text following rules of the SVG language to graphically 
depict a simple class diagram model. However, Netsilon cannot be seen as a complete solu-
tion as it is specialized in generating text representations: it is not possible to reverse the 
process (from text to model), and graphical syntaxes are not natively handled. Nevertheless, 
experience presented here is at the root of solutions developed in next chapters.

Section 3.1, 3.2 and 3.3 of this chapter are inspired from [MSFB05]
as published in the journal of Software and System Modeling 
(SoSyM) in 2005.

3.1 Web Applications

A web application is an information system which supports user-interaction through web 
based interfaces. Typical web applications feature data persistence, transaction support and 
dynamic web page composition.

A web application is split into a client-side part, which is running in a web browser, 
and a server-side part, which is running on a web server. The client-side is responsible for 
page rendering while the server-side is responsible for business process execution and web 
page construction. The process of page construction varies widely in dynamicity, ranging 
from completely static, in the case of predefined web pages, to totally dynamically con-
structed pages (which vary in terms of content, presentation and navigation), when the web 
pages are the result of some computation on the server: programs (that can be written in lan-
guages like PHP, JSP, Java, or ASP .NET) integrate into web pages the graphic elements 
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and the information coming from many kinds of data sources (like databases, files, sessions 
or context variables…). 

3.2 LDE for Web Application Engineering

Netsilon is a web application modeler independent from deployment platforms: one can 
describe a complete dynamic web application at the analysis level without integrating any 
detail depending on the application server or the database server. The architecture of Netsi-
lon is given in figure 3.1.

Once the requirements have been gathered (via techniques such as use-cases and 
activity diagrams), the web application is modeled from three points of view, the Business 
Model, the Hypertext Model, and the Presentation Model. These models are independent 
from the web platform (i.e. application server and data persistency technique); they capture 
a comprehensive description of the web application. With the help of Xion, an action lan-
guage designed to query and manipulate the business model, they contain enough informa-
tion to drive the generation of the final web application. In addition to these three models, a 
Deployment Model gives information about the target platform, i.e. the kind of application 
server (PHP, JSP or Java), the kind of data repository (relational database), and information 
like the URL of the web application, or password to access database. Models and their rela-
tions are given in figure 3.2.

Figure 3.1: Web Application Modeling with Netsilon
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We continue the section by describing in more details the business model, the hyper-
text model and the presentation model. We also present the Xion action language.

3.2.1 Business Model

The business model describes the organization of the business concepts managed by the 
web application. UML class diagrams are used to represent business classes, their attributes, 
operations and relations. The implementation of methods is specified with the action lan-
guage Xion.

The business model is used as an input of the model-driven process which generates 
the business layer of the web application, using guidelines described in the literature 
[MVC03]. Object persistence is provided by a relational database, whose schema is derived 
from the business model. The object-to-relational mapping is designed so that incremental 
modifications to the business model have as little impact as possible on existing information 
in the database; we talk of M0 preserving transformations. The relational database is com-
pletely abstracted away. The business model is a subset of UML class diagrams in that it 
does not integrate multiple inheritance, n-ary associations, or derived attributes. Concrete 
syntax is that one of UML class diagrams. The classes from the business model are all per-
sistent by default, the code is completely generated.

The advantage is that the designer does not have to care about persistence, the process 
of creating and updating the database schema is completely automated, and implementation 
classes for the business model are generated in the web platform target language (either 
Java or PHP).

An example of business model is shown in figure 3.3. Designed web application is a 
simple genealogy store. Persons may be married and have two parents. Operation Per-
son:marry is implemented in Xion and creates the corresponding Marriage object, if 
gender is actually different between the people to marry.

Figure 3.2: Netsilon Set of Models
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Netsilon features an Object Administrator generator. The object administrator is a 
generic web application for the purpose of administrating the objects stored in the database. 
Data are organized in objects according to the business model, and objects can be created 
and deleted, their attributes can be updated, links can be created between objects, and oper-
ations can be executed. This administration tool is very helpful, and is used both for initial-
ization of the object database and for data maintenance purposes. The generator is actually a 
model transformation that creates a specific presentation and hypertext model from the 
business model. Such derivation is achievable since the user interface of the object adminis-
trator does not have to be customized, and can therefore follow simple user interaction pat-
terns.

3.2.2 Hypertext Model

The second model, the hypertext model, is an abstract description of composition and navi-
gation between document elements and fragments of document elements. In the context of 
web modeling this model describes how web pages are built (composition) and linked (nav-
igation). Hypertext model makes use of a completely new graphical language.

Composition describes the way the various web pages are composed from other pages 
(fragments) as well as the inclusion of information coming from the business model or cur-
rent context (like sessions). Again, Xion is used as a query language to extract information 
from the business model and as a constraint language to express the various rules, which 
govern page composition.

Navigation details the hyperlink between the web pages, including the specification 
of the parameters that will be transferred from page to page, as well as the ability to specify 
actions to be applied when triggering a link (typically to execute a method defined in the 
business model). The Xion language allows the specification of the actions to be performed 
when transitioning from one page to another and the declaration of predicates that lead to 
the selection of a particular path between pages according to the current context and the 
business model.

Person

public String name
public String surname
public Gender gender
public PersonStatus status

public Marriage marry(Person person)
Marriage

public Date date

Gender

public String male
public String female

<<enumeration>>

0..*

children

2

parents

0..1

husband

0..1

wife

Figure 3.3: An Example of Business Model
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Concepts of composition and navigation are unified under the concept of Decision 
Centers. Regarding composition, we identified the simple Composer, which includes the 
result of a web page execution into another, and the Iterative Composer, which performs 
this work for each element of a collection computed from a Xion expression. Value Display-
ers make possible to integrate a value computed from a Xion expression into a web file. 
Regarding navigation, we identified Links, which compute an URL to reach another web 
file, and Forms, which are links that gather data from HTML forms. In addition to this, web 
files may need some parameters that pass through decision centers thanks to Xion expres-
sions.

The hypertext model makes it possible for a tool to check the coherence and the cor-
rectness of the navigation at model code generation time. This removes all the troubles 
related to parameter passing and implementation language boundary crossing (mix of inter-
preted languages, un-interpreted strings, parameter passing conventions…) often encoun-
tered when programming web applications by hand.

As an example, an excerpt of the hypertext model for our genealogy application 
server is given in figure 3.4. A web page peopleList is composed of the list of people 
stored in the genealogy web application. This is realized by an iterative composer (peo-
pleListDisplay) which will integrate another web page (personInList) for each per-
son that will be found according to a Xion expression (not shown here). This latter web 
page displays some information about the iterated person passed as parameter by peo-
pleListDisplay. This information is displayed thanks to value composers like person-
IsMarried or personName, which have knowledge of the value to display thanks to 
some Xion expressions. personInList also offers a link to another web page (person) 
to display more information on a given person. The peopleListHead and peopleList-
Foot web files (and composers) open and close the HTML table in which are represented 
the people. An example for peopleList applied in such a genealogy web application is 
given in figure 3.5.

3.2.3 Presentation Model

The third model, the presentation model, contains the details of the graphic appearance of 
web applications. We do not want to restrict the field of possible graphic designs. We want 
to be able to generate any kind of web user interface.

A dynamic web application is composed of Fragments, which can be developed as 
static HTML, supplemented with some special placeholders, easily identifiable by graphic 
designers and HTML integrators. Whenever some dynamic information must be inserted 
into a web page, the graphic designers simply designate the spot in the file where this infor-
mation must be inserted: compositions and links as defined by the hypertext model as given 
in figure 3.5 are placed using tags following the pattern !-!/objexion/
<identifier> <name>/. The presentation model is not limited to HTML and can be 
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used to manage any other textual formalism like Javascript, XML or SVG. An example of 
hypertext model for the personInList web file is given in figure 3.6. In the example, the 
pattern follows the HTML rules, thus the generated web application will follow the HTML 
rules. 

DEFAULT DEFAULT

DEFAULT

DEFAULT

peopleList Collection
peopleListDisplay

personInList Link
personDetails

person

Value
personIsMarried

Value
personName

Value
personSurname

Value
personGender

Composition
peopleListFoot

peopleListFoot

Composition
peopleListHead

peopleListHead

Figure 3.4: Hypertext Model for Listing People
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3.2.4 Xion

The behavior of dynamic web applications depends on the overall state of the system. This 
state is stored for part in databases (which implement persistence of the business model) 
and files (HTML templates or cookies for instance), but also in volatile memory (data of the 
currently active sessions and parameters). The Xion language was designed to provide uni-
form access to all kinds of state in the system, and is used to describe queries, constraints 
and actions. A typical example would be to have the possibility to look for a specific set of 
objects according to some constraints, like retrieving a customer cart from a character string 
carried by a web page parameter or contained by a cookie.

Xion has to provide support to query the business model and to express methods and 
state changes. OCL is a very good candidate for querying instances of the business model 
however (because of its side-effect free nature) it is not well adapted for defining method 
bodies or any change in the model that the hypertext model may need to define. Some 
approaches known as declarative, like the B predicates [Abr96] or the Alloy language 
[Jac02], support the definition of side-effects procedures by constraints defining the state 

Name Surname Gender Details
Romanov Alexandra female go
Romanov Alexis male go
Romanov Anastasia female go
Romanov Maria female go
Romanov Nicolas male go
Romanov Olga female go
Romanov Tatiana female go

Figure 3.5: Genealogy Web Application at Work

<tr> 
<td>!-!/objexion/5 personName/</td> 
<td>!-!/objexion/6 personSurname/</td> 
<td>!-!/objexion/22 personGender/</td> 
<!--td>!--!/objexion/7 personIsMarried/</td--> 
<td><a href="!-!/objexion/8 personDetails/">go</a></td> 
</tr>

Figure 3.6: Hypertext Model for personInList
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before and after the procedure has proceeded. We did not choose that solution because gen-
erating efficient code out of a declarative specification is still an open issue [MTAL98], and 
because most software developers are more used to the imperative approach, like the action 
semantics, with a well-defined sequence of actions to perform.

In order to define Xion, we decided to extend the OCL query expressions to define a 
new imperative language for our actions and queries needs. This means to add side-effects 
capabilities to OCL, and to provide imperative constructs, like blocks and control flows. In 
the context of the business model, supporting side-effects means:

• Create and delete an object,
• Change an attribute value,
• Create and delete links,
• Change a variable value,
• Call non-query operations.

It was also necessary to remove some constructs of the OCL, which are out of the 
scope of the approach:

• Context declaration, only useful for defining constraints,
• @pre operator and message management, only meaningful in the context of an opera-

tion post-condition,
• State machine querying, as there is no equivalent concept in the web architecture 

Netsilon proposes.

Since most web application developers are already familiar with the Java language, 
we re-used part of its concrete syntax. Constructs we took from Java are:

• Instruction blocks, i.e. sequences of expressions,
• Control flow (if, while, do, for),
• return statement for exiting an operation possibly sending a value,
• super call of ancestor constructor.

Moreover, for Xion to look like Java as much as possible, we decided to keep Java 
variable declaration, and operators (==, !=, +=, >>, ? ternary operator, etc.) rather than 
those defined by OCL. The standard OCL library was also slightly extended, by adding the 
Double, Float, Long, Int, Short and Byte primitive types, whose size is clearly 
defined unlike the OCL Integer or Real. As web application often deals with time, we 
also added Date and Time predefined types. 

Considering the business model shown in figure 3.3, an example for the Xion lan-
guage regarding the marry method implementation is provided in figure 3.7. As one can 
see here, Xion looks like Java with if/else control blocks, the null value and the 
return statement. Notice that this and self can be used indifferently. We can also see 
that enumeration literals are treated as OCL 1.3 prescribes, starting with a # sign.
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Another example is provided in figure 3.8. Here, we can better feel the OCL affilia-
tion of the language. This example is a parameter transmitted to the peopleList web file 
of the hypertext model of figure 3.4. peopleList is in charge of displaying the given list 
of Person. This fragment web file is integrated into a calling web file by means of a com-
poser decision center. The purpose, here, is to display sisters of a given person, represented 
by the person variable. First we navigate the parents association end. This navigation 
returns the set of Person instances representing the parents of the Person instance. To get 
all children of these parents, we then navigate from the obtained instances through the 
children association end. As a consequence, the Person instance and his/her siblings, 
with the same father and the same mother, will appear twice in the resulting collection. Half 
siblings will only appear once for that they have only one common parent. As we are not 
interested in making a difference between sisters and half sisters, we remove duplicate 
instances with the asSet predefined operation. To remove person from this collection, 
we use the excluding predefined operation. In this list, we only want sisters of person; 
this can be done by selecting only instances which are declared to have a female literal 
value in their gender slot. This is achieved by the select predefined operation. Finally, 
we want the obtained collection to be ordered by name. This is achieved by another pre-
defined operation sortedBy.

//person is parameter of the operation 
Marriage ret = null; 
if (this.gender == person.gender) { 
ret = null; 

} else { 
ret = new Marriage(); 
ret.date = Date.getCurrent(); 
Person wife, husband; 
if (self.gender == #female) { 
wife = this; 

husband = person; 
} else { 
wife = person; 
husband = this; 

} 
ret.wife = wife; 
ret.husband = husband; 

} 
return ret;

Figure 3.7: Implementing Person::marry in Xion
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3.3 Implementation Insights

Our goal is to achieve total code generation from models, while making no restrictions on 
the visual appearance of the web application. Therefore, we defined novel modeling con-
structs, for the description of the composition of web pages from various sources of infor-
mation, and for the specification of the navigation between pages. These models are precise, 
abstract and independent from the target platform. They are later transformed into execut-
able code which runs on the web platform. The new modeling elements are packaged in a 
new metamodel.

3.3.1 Metamodel

As the business model is a clone of UML class diagrams, we merely reused the UML meta-
model that describes class diagrams. The presentation model is nothing but a set of textual 
files, and does not deserve a metamodel since file systems natively handle such data. On the 
contrary, the hypertext metamodel is a completely new DSL that needs to be described from 
scratch, and we decided to use metamodeling techniques to state its concepts, i.e. its 
abstract syntax. The metamodel is presented in figure 3.9.

The central element is WebFile, which describes a document element (or a frag-
ment). A WebFile can be treated as a static or a dynamic element: if static, it is simply cop-
ied unmodified during deployment; if dynamic, it is generated as server-side code and 
participates in the dynamic part of the web application. HTML tag filtering and striping 
makes it possible to use web-authoring tools for the design of fragments as easily as for the 
design of entire pages.

A Zone is a specialized WebFile for which associated content is obtained dynami-
cally by the evaluation of an expression that returns either the URL of the content or the 
content itself.

Another specialization is PolymorphicZone as a mean to introduce the notion of 
polymorphism in the hypertext model. A PolymorphicZone is associated to an operation 
defined in a class (of the business model) which is in charge of producing the content. Since 
the operation can be implemented by overridden methods in the subclasses, the content can 
be generated according to the real class of an instance. To reinforce the separation between 
the business model and the hypertext model, we introduce a subclass of Method named 

person.parents.children->asSet()->excluding(person) 
->select(p : p.gender == #female)->sortedBy(p : p.name)

Figure 3.8: Sisters found by a Xion Expression
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DisplayMethod that is associated to a WebFile. The production of content by an opera-
tion implemented by one or more display methods is thus realized by web files. At runtime, 
a polymorphic zone is replaced by the web page resulting from invocation of the display 
method.

Each WebFile has a context WebContext that is placeholder for entry parameters. 
A parameter is described by the WebVariable metaclass and has a type, which is an 
instance of a Classifier found in the business model.

DecisionCenter define variation points in the hypertext model. A decision center 
has an entryAction written in Xion, a unique identifier to identify its placeholder in the 
presentation model, local variables (WebVariable) and an ordered sequence of Deci-
sionConstraint. A decision constraint defines a guard whose evaluation to true leads to 
the selection of its associated WebFile.

Metamodel for deployment model is given in figure 3.10. The Site metaclass is the 
main container of the complete deployment information. It can define several Deploymen-
tSite, which conform either to JSPDeploymentSite, ServletDeploymentSite, or 
PHPDeploymentSite, for defining which application server is to be targeted, and where 
to export generated code. Each deployment site uses a certain number of databases for stor-
ing business information. The chosen platform for generation is referenced in the site by the 
currentDeploymentSite association end. Deploying the same web application on 
another platform is done by changing the DeploymentSite referenced in the current-
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Figure 3.9: Hypertext Metamodel (Excerpt)
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DeploymentSite association end. Creating a new deployment platform is done by pro-
viding information about the new platform, without changing anything in the web 
application description.

Xion also defines a metamodel to state its abstract syntax, but we will avoid its 
description here for sake of brevity. In order to implement Netsilon, we modified the 
ArgoUML UML modeler [BRTK]. In this program, metamodels are encoded by Java 
classes, and representations are programmatically prescribed with help of a generic 2D 
graphical API. We followed that precise technique to encode abstract syntax and representa-
tion for hypertext model. Xion was completely described using ANTLR [Par05]: abstract 
syntax was described by an ANTLR tree grammar, and concrete syntax by an ANTLR text 
grammar. Obviously, coherence rules (e.g. type checking for Xion) was completely hand-
coded using Java or ANTLR. The same remark holds for model transformations and code 
generation described in next section.

3.3.2 Improvements and Code Generation

Target platform have both static (i.e. data persistency) and dynamic (i.e. behavior) dimen-
sions. Target technologies may be an Oracle, a MySQL or a PostgreSQL relational database 
regarding static aspects and PHP, JSP or Java Servlet regarding dynamic aspects. As a con-
sequence, the possible number of different deployment platforms is the Cartesian product of 
the supported databases and application servers. Code generation is performed using a two-
step process by using intermediate languages.
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visibility : VisibilityKind
isSpecification : Boolean
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packagingType : Short

JSPDeploymentSite ServletDeploymentSite

PHPDeploymentSite

Site
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*
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Figure 3.10: Deployment Metamodel (Excerpt)
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The intermediate layer is the combination of an SQL Abstract Syntax and a 
generic application server script, merely called Intermediate Language. The SQL 
abstract syntax is a subset of the SQL 92 language, supposed to be managed by most 
RDBMS. This syntax allows managing database schemas (Schema Management), for 
creating, deleting, or modifying table schemas. This SQL abstract syntax also allows data 
access to the recordsets (Data Access), for instance by Select queries (Query). The 
Intermediate Language is an abstraction of the concepts of scripts that application 
servers handle and that code generation can finally target. The Classes can define structure 
of web application classes. Behavior is expressed by Instructions, possibly database 
manipulations (DatabaseRequest), depending on the above-mentioned SQL Data 
Access. Scripts are specialized in integrating pieces of server-side behavior in files to be 
sent to the client, expressed with Instructions.
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Figure 3.11: Code Generation Process
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Since business information is to be stored in a database, a transformation Object 
Relational Mapping creates a database schema from the Business Model. In case a 
database schema already exists, it will be altered by the transformation as necessary. The 
business information, to ease integration and reuse, is encapsulated into proxy server-side 
classes by the Business Logic transformation. Behavior in the Business Model, 
described in Xion statements as bodies of constructors and methods, are also translated by 
this Business Logic transformation inside corresponding server-side classes, taking 
advantage of the Xion to Intermediate transformation. The Presentation Model
and the depending Hypertext Model are compiled together by the Navigation to 
Scripts transformation to produce Scripts of the Intermediate Language.

Target layer is generated from the intermediate layer through a transformation 
selected from information contained in the deployment model (PHP Generation, JSP 
Generation or Servlet Generation). Target is actually some text, even though rep-
resented as a model here. The correct SQL model (specialized SQL for Oracle, MySQL or 
PostgreSQL) is transparently selected by the Object to Relational Mapping and 
Xion to Intermediate transformations through a higher-order hierarchy mechanism, 
implemented by a factory design pattern.

3.4 Experiencing SVG Model Representation

Netsilon is basically a web application modeler and generator, but may be seen from various 
viewpoints. One of these possible viewpoints is the following. The business model is some 
kind of model description facility, i.e. it may be used as a metamodeling language. By gen-
erating object administrator and deploying the web application, one may edit a model, so 
called the abstract syntax graph, in a rapid prototyping fashion. The fact that the deployed 
web application is actually another modeling tool is merely a technical detail. The presenta-
tion model may be described following rules of any textual representation as soon as it com-
plies with the template-based hypertext model. Netsilon also offers a mean to represent the 
model in a textual form by text templates. As a resume, a model may be edited using the 
object administrator and textually represented according to a template-based description.

In this part, we experience such an architecture in which we targeted the SVG textual 
language for 2D vector graphics in order to depict an abstract syntax graph. Indeed, a tex-
tual language such as SVG may represent graphics, so Netsilon may be used to generate 
diagrams. We will illustrate our approach by an example, that is a simplification of the 
UML class diagrams. A similar experiment succeeded in defining the chess language (as 
presented in section 5.2.2 on page 87) and related user interactions making a chess game 
available for playing online.
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3.4.1 Simplified UML Class Diagrams

UML class diagrams are the best known part of UML. They are designed to describe class 
systems of object-oriented applications. We show a slightly customized excerpt of the meta-
model of UML 1.4 class diagrams in figure 3.12. Difference is that GeneralizableEle-
ment inherits Namespace while in the original metamodel Classifier inherits both 
GeneralizableElement and Namespace. We had to alter this fact since Netsilon does 
not support multiple inheritance. In addition, Feature is given an order attribute to sim-
ulate the {ordered} constraint in UML metamodel.

To have a brief description, a Class is an element with a name that may contain 
some Attributes, and that may be integrated into a Generalization hierarchy. An 
Attribute has a name and a type. The interested reader may refer to the UML standard 
to have complete description of UML class diagrams [AAB+07]. It is interesting to see that 
the UML abstract syntax is easily representable by UML class diagrams. This is this prop-
erty that makes reasonable to represent metamodels with Netsilon business models. This 
property is also the root idea in the definition of the MOF metamodeling language 
[ACC+06].

Regarding graphical depicting of elements in a diagram, a Class is represented by 
rectangle, in which the name of the Class is shown. That rectangle can be of any size and 
can appear anywhere in a class diagram. Moreover, different representations of the same 
class may exist together in the same class diagram. A Class representation may depict 
some of the Attributes owned by the Class in a line-separated part at the bottom of the 
representation rectangle. An Attribute is shown as a text using the following template: 
<attribute_name> : <attribute_type_name> (note that this rule is not applied 
for representing the business model, for instance as shown in figure 3.12). A Generali-

Element

ModelElement

public String name

Namespace GeneralizableElement

public Boolean isRoot

public Boolean isLeaf

public Boolean isAbstract

Relationship
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0..*
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Figure 3.12: Simplified UML Class Diagrams Metamodel
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zation is depicted by an arrow between a representation of each one of the connected 
classes. The arrow is oriented to the representation of the generalization. The arrow 
can follow any route between its ends, provided that the arrow ends touch the borders of the 
representations of the connected elements.

Neither absolute position of representation for elements, nor the route followed by 
representation arrows of Generalizations are important in terms of abstract syntax. 
Important points are the position of an Attribute representation (within a representation 
of the holding Classifier), and that the arrow depicting a Generalization actually 
connects representations for the associated Classes. In this, the simplified UML class dia-
grams enter the category of connection-based languages1.

3.4.2 Representation Using Netsilon

Previous section ended with a description of the representation rules for the simplified 
UML class diagrams. The description was given in plain English. Here, we provide this 
description in terms of Netsilon business, hypertext and presentation models.

3.4.2.1 Representation Framework

Representations require information that is not given by the metamodel for abstract syntax. 
For instance, abstract syntax does not state the number of representations, or where repre-
sentation are in the diagram. This requires to enhance the business model. We show in 
figure 3.13 an abstract framework to handle representation data.

Graphics is an abstract class that declares two abstract operations: display and 
toggleChange. display should be implemented by display methods that must return the 
web file supposed to provide concrete representation for the Graphics object. tog-
gleChange is an operation that should be called anytime the represented element or its 
representation (i.e. a Class instance or its representation) is modified (e.g. by changing its 
name or the size of its representation).

Diagram is a concrete realization of Graphics for diagrams. A diagram is a repre-
sentation container. Note that many diagrams may exist together to represent a same model, 
but a representation cannot cross the boundaries of a diagram. A Diagram has a name, and 
maintains a timestamp (thanks to the lastChangeD and lastChangeT attributes) that are 
updated each time a toggleChange is called. The interest is to know when model or rep-
resentation has changed and when a diagram representation (as shown in a web browser) 
should be regenerated.

RepresentationElement is the abstract class for any representation element, and 
should be further specialized by concrete representation classes. It declares abstract opera-

1. This example is a simplification for UML class diagrams, and does not define graphical class composition, 
which makes UML class diagrams enter the category of hybrid languages (see section 2.2.2 on page 27).
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tions able to provide concrete location of the representation element (getX and getY). 
getRepresented is another abstract operation that should return the represented model 
element (a concept instance in the abstract syntax graph). A RepresentationElement is 
owned either by another RepresentationElement, or by a Diagram. If a Represen-
tationElement instance or its represented element in the abstract syntax graph is 
changed, the toggleChange operation must be called; message is transmitted to the 
owner Graphics instance, be it another RepresentationElement instance or a Dia-
gram instance, so that the information is propagated up to the owning diagram.

Connector is a class that may be used for connection-based languages. It connects 
two RepresentationElements at a given place relative to the origin of the connected 
element, so that if the connected element moves, a Connector instance does not need to be 
updated in terms of representation data, as held by the relativeX and relativeY
attributes. getX and getY are operations that return the absolute place of the connection, 
according to the relativeX and relativeY attributes, and the actual position of the 
connected element.

MovableElement is a specialization of RepresentationElement. It declares an 
abstract operation that should be called whenever the representation object is moved on the 
scene (i.e. when the user drags a representation on the diagram scene). ConnectionEle-
ment is another specialization that encapsulates the connection concern in connection-
based languages. A ConnectionElement owns a Path of ordered Points, which are at 
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public Real getY()
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Figure 3.13: Diagramming Framework
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a given position, be it absolute or relative to a Connector. The Path represents the route 
of the connection and states what are the intermediate points between Connectors.

Framework is extended to hypertext model. A generic web file written in HTML, 
index, accepts (as a diagram parameter) the Diagram to show. If not provided, the web 
page proposes the list of registered Diagrams in the system. Each one of these diagrams is 
shown as an hyperlink, which calls back the index web file (through a link decision cen-
ter), this time with the diagram parameter filled. In this latter case, the index web file 
embeds the diagram web file. Moreover, thanks to Javascript code and a Java applet, the 
index web file regularly calls a requestReload web file, which returns “true” or “false” 
(thanks to a value displayer) depending on whether the represented diagram has changed or 
not since last load of the diagram web file. In other words, it returns “true” if a tog-
gleChange was called on the diagram since the diagram was loaded. In case the 
response is “true”, index reloads the diagram web file.

The diagram web file renders a Diagram provided as mandatory parameter, using 
the SVG textual language. It is the implementation web file for the Diagram::display
display method. The web file integrates (through a collection displayer) each Represen-
tationElement owned by the diagram by calling their display operation. Remember 
that the display operation returns the web file able to display the Representa-
tionElement on which it is invoked. In addition, diagram integrates Javascript code 
that handle “drag and drop” for those SVG nodes that declare .movable. in a class
XML attribute. Once the SVG node is dropped, script sends in background a request to the 
move web file with the moved element and the coordinates of the move as parameter. Con-
sequence is that the move method is invoked on the sent MovableElement with the new 
coordinate as argument.

display is a polymorphic web file associated to the Graphics::display opera-
tion: the resulting web file (e.g. diagram in case of a Diagram) constitutes the content of 
the “virtual” display web file.

Finally, line is a web file that is iteratively composed by the path collection dis-
player to represent a Path, as found in a parameter of the decision center. line is merely 
an SVG line that takes as parameter the coordinates of the end points, and the color that 
should be used for the drawing.

3.4.2.2 Business Model: Concrete Representations

We present here the specialization of the RepresentationElement of the framework for 
each representable class of the metamodel, namely Attribute, Classifier (as a gener-
alization for Class), and Generalization.

The RepresentationElement specialization for Attribute is shown in 
figure 3.14. As expressed by an OCL constraint, an AttributeRepresentation should 
be owned by a ClassifierRepresentation, which is the representation element for 
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Classes. The represented object is referenced through an association . According to 
multiplicities of the association ends, the representation may only depict one Attribute. 
Its is also stated (through a 0..* multiplicity) that an Attribute may be represented any 
number of times. There exist only two representation data held by attributes xMargin and 
height. xMargin expresses the margin to apply from the left-hand side before writing the 
text, and height the height of the text box. Those data make it possible to implement the 
abstract operations required by superclass regarding position (depending on the container 
that should be a class representation, found by the getClassifierRepresentation
helper function) and represented model element (accessed through ). The display dis-
play method will be discussed later in section 3.4.2.3.

The RepresentationElement specialization for Classifier is shown in 
figure 3.15. We decided to follow the UML specification by defining representation on 
Classifier rather than on Class for extensibility reasons: if a new kind of Classi-
fier is added to the abstract syntax, it will automatically “inherit” representation. As the 

Figure 3.14: Attribute Representation Element

context AttributeRepresentation inv: 
self.owner.oclIsKindOf(ClassifierRepresentation)
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representation for a Classifier may be moved freely, we make ClassifierRepre-
sentation inherit MovableElement instead of directly inheriting Representa-
tionElement. An OCL constraint enforces that a ClassifierRepresentation may 
only be owned by a Diagram. Again, the represented model element is accessible through 
an association  which states that a Classifier may be represented several times 
although a ClassifierRepresentation must represent only one Classifier. Data 
handled by the representation are the position (x and y), margins and height for the name 
compartment (xMargin, yMargin and titleHeight), the width of the rectangle, 
background and foreground colors, and the presence or not of an attribute compart-
ment (showAttributes). This latter attribute is a representation design decision, as one 
could imagine computing whether ClassifierRepresentation owns some 
AttributeRepresentation or not. The getAttributeRepresentation helper 
function finds all AttributeRepresentations owned by this ClassifierRepre-
sentation.

The RepresentationElement specialization for Generalization is shown in 
figure 3.16. As a GeneralizationRepresentation is a connection, it inherits the 

Figure 3.15: Classifier Representation Element

context ClassifierRepresentation inv: 
self.owner.oclIsKindOf(Diagram)
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ConnectionElement class. An OCL constraint states that GeneralizationRepre-
sentations must be owned by a Diagram, and that connected elements should be the 
representations for those GeneralizableElements participating in the represented 
Generalization. A representation datum is relative to the color of the representing 
arrow, but one should not forget the route path and connection points that are also represen-
tation data. In addition to implementation of inherited abstract operations, it defines helper 
functions to find connectors and representations for generalization and special-
ization of the represented Generalization. Xion code for getSpecialization-
Connector is shown in figure 3.17. Code navigates to the Connector class through the 
connected association end. Among those Connectors, it selects that one whose con-
nected element is the representation for the specialization of the represented Gen-
eralization. Note that Xion was designed before the any operation appeared in OCL.

Figure 3.16: Generalization Representation Element

context GeneralizationRepresentation 
inv: self.owner.oclIsKindOf(Diagram) 
inv: self.connected.getRepresented() = 

Set{ self.generalization.generalization, 
self.generalization.specialization}
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3.4.2.3 Hypertext and Presentation: Concrete Representations

If representation classes are defined to handle representation data, one still needs to imple-
ment the display operation by specifying a template web file responsible for SVG pro-
duction.

SVG template for the AttributeTemplate web file, which implements the 
AttributeRepresentation::display display method, is shown in figure 3.18. The 
reference for each value displayer is shown in italic with a footnote that provides the Xion 
expression that the value displayer evaluates to. represented is a parameter of the web 
file, which is the AttributeRepresentation object that is sent the display display 
message. The template is a tspan SVG XML node. The node declares the attributes id
that is filled with object identifier of represented, an attribute x that is filled with the 
xMargin representation data, and an attribute dy that is filled with the height representa-
tion data. The node, which is an SVG text part, defines a template for the text to be dis-
played: 
<name of the type of the attribute to show> : <name of the attri

return this.connector[connected]->select(i: 
((ClassifierRepresentation)i.connected).classifier 
 == this.generalization.specialization)->getOne();

Figure 3.17: getSpecializationConnector Xion Implementation

Figure 3.18: Attribute Representation Presentation Model

<tspan 
id="!-!/objexion/463 RepresentationId/1" 
x="!-!/objexion/471 xMargin/2" 
dy="!-!/objexion/476 attributeHeight/3"> 
!-!/objexion/472 AttributeName/4 : 
!-!/objexion/473 AttributeType/5 

</tspan>

1.represented.getOID();
2.represented.xMargin;
3.represented.height;
4.represented.attribute.name;
5.represented.attribute.type;
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bute to show>, as given by Xion expressions navigating from the represented
object.

An excerpt of the hypertext model for Classifiers is shown in figure 3.19. Value 
displayers are removed for sake of readability. Here, the hypertext model is slightly more 
important as representation concerns are split between different web files. Important Xion 
expressions to state decision constraints (  and ) and collections ( ) are also given in the 
figure. All those files are transmitted the represented web variable that holds the Clas-

represented.showAttributes
represented.getAttributeRepresentation();

represented.classifier.isAbstract

Figure 3.19: Classifier Representation Hypertext Model (Excerpt)

<g id="!-!/objexion/463 RepresentationId/" class=".movable." 
transform="translate( !-!/objexion/464 x/, 

!-!/objexion/465 y/)"> 
<rect width="!-!/objexion/466 width/" 

height="!-!/objexion/467 titleHeight/" 
fill="!-!/objexion/779 background/" 
stroke="!-!/objexion/775 foreground/"/> 

!-!/objexion/778 ClassifierName/ 
!-!/objexion/479 attributesDisplay/ 
</g>

Figure 3.20: Classifier Main Representation Presentation Model
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sifierRepresentation object to depict. The main web file, i.e. the implementation of 
the ClassifierRepresentation::display display method, is ClassifierTem-
plate, for which presentation model is shown in figure 3.20. The template is an SVG 
group that takes as identifier that one of the representation object. The group is translated to 
the actual position of the representation. Moreover, it declares the .movable. class, which 
makes it possible to drag the group as drawn in an SVG renderer. As ClassifierRepre-
sentation is a MovableElement, it will be possible to update representation data about 
position by mean of a drag. The group contains an SVG rectangle which follows prescrip-
tions of representation data. The group also contains the classifierName and 
attributesDisplay decision centers shown in figure 3.19.

The ClassifierTemplate_abstractName web file is responsible for displaying 
the name of the represented classifier (in italic) in case the classifier is abstract as stated by 
expression . If not the case, the ClassifierTemplate_name web file represents the 
name in standard font. In case the representation object holds that representation data 
stating that a compartment for attributes should be depicted (expression ), a composer 
includes the ClassifierTemplate_attributes web file. In addition to creating the 
rectangle compartment for depicting attributes, this latter web file iteratively calls the dis-
play display method of each one of the contained AttributeRepresentations 
(expression ), i.e. the AttributeTemplate web file described above.

Presentation model for Generalization is given in figure 3.21. It consists in an 
SVG group that contains a reference to the path predefined decision center (seen in 
section 3.4.2.1) in order to draw the path of the generalization. The group contains another 
group responsible for depicting the end arrow. That second group is placed and rotated 
according to some computation described in the business model by mean of the getX, 
getY and getAngleDeg methods of the GeneralizationRepresentation class.

<g id="!-!/objexion/463 RepresentationId/"> 
!-!/objexion/926 path/ 
<g transform=" translate(!-!/objexion/1314 genGenX/, 

!-!/objexion/1315 genGenY/) 
rotate(!-!/objexion/1316 genGenRot/)"> 

<polygon fill="#FFFFFF" stroke="!-!/objexion/1317 color/" 
points="-10,5 0,0 -10,-5"/> 

</g> 
</g>

Figure 3.21: Generalization Representation Presentation Model
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3.4.2.4 Generating Representation

We provide here an overview of the system described above deployed as a web application. 
Once at run, the first action should be to enter an abstract syntax graph (i.e. a model) in the 
system using the object administrator. An example of such model is given in figure 3.22, as 
an instance of business model of figure 3.3.

For that model to be represented, one needs to provide a representation model, as an 
instance of metamodel discussed in section 3.4.2.2. Again, this model may be entered in the 
system using the object administrator. An example of model to handle representation data is 
provided in figure 3.23.

Once defined the abstract syntax graph as in figure 3.22 and the representation data as 
in figure 3.23, the representation can be generated and rendered in an SVG-capable web 
browser. Application of the index main page offers the list of possible diagrams, that is the 
CD1 diagram, as stated by the representation model. If one clicks on the hyperlink for CD1, 
the index web page is now applied again with that information it should embed representa-
tion for the CD1 diagram, that is the diagram page. This latter page contains any represen-
tation for owned graphical elements, that are the ar, fr and gr representation objects.

The ar and fr representation objects are ClassifierRepresentations, so they 
will be displayed by two different application of the ClassifierTemplate web page. 
For the fr representation object, the expression  of figure 3.19 returns false, and it is the 
ClassifierTemplate_name that will apply and represent the name of the represented 
Class (fox) in standard font. As the fr representation object indicates that attributes 
should be represented (expression  is “true”), the AttributeTemplate web file is 

Figure 3.22: An Example Model for Figure 3.3

:Class

name = "Integer"

:Class

name = "String"

animal:Class

name = "Animal"
isRoot = false
isLeaf = false
isAbstract = true

fox:Class

name = "Fox"
isRoot = false
isLeaf = false
isAbstract = false

hb:Attribute

name = "huntedBirds"

name:Attribute

name = "name"

f2a:Generalization

name = "A fox is an animal"

generalization

specialization

parent

child

owner

owner

features

features

type

typedElement

typedElement

type
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applied for the contained hbr attribute representation object: name and type of the repre-
sented hb Attribute appears in a dedicated rectangle.

The ar representation object is also applied the ClassifierTemplate web page, 
but the result is different. On one hand, the represented Class (animal) is abstract, thus, 
according to expression  of figure 3.19, name is shown in italic as prescribed by the 
ClassifierTemplate_abstractName template. On the other hand, despite the ar
object owns an nr AttributeRepresentation object, the showAttributes repre-
sentation data is set to false. This makes the expression  return false and prevent represen-
tation for the second compartment (ClassifierTemplate_attributes) that would 
have owned representation for nr.

The gr representation object is merely given by applying the web file shown in 
figure 3.21. As there are no intermediate point, it merely consists in a line between repre-
sentations for ar and fr. The final representation for this model is an SVG XML document 
that can be interpreted as the 2D vector graphics as in figure 3.24.

Figure 3.23: An Example Representation Model for Figure 3.22
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In case representation for a classifier is moved, e.g. Animal, the Javascript code 
responsible for the move calls in background the move web file. As a result, the ar repre-
sentation object is sent the move message. ar::x and ar::y slots are updated and a tog-
gleChange message is propagated up to the CD1 representation object. At that precise 
moment, generalization representation has not moved yet on the SVG scene, so that the end 
of the representation arrow may point in vacuum. Since index regularly calls the 
requiresUpdate web file that now returns “true”, the complete diagram is regenerated 
and includes a generalization arrow that is now correctly placed.

3.5 Conclusion

Netsilon is an interesting example for three main reasons in the context of this thesis: it pro-
motes an LDE methodology, it is built following metamodelling techniques to define new 
languages, and it is able generate a customized representation for a given model.

Beside the tool, Netsilon supports a clear LDE methodology regarding web applica-
tion development following principles described in section 2.1.1 on page 11 and shown in 
figure 3.25. From system engineer point of view, there are four levels of abstraction: web 
application described in two tiers (business, hypertext), optional generation of an object 
administrator web application, graphical appearance (presentation, that is the third tier), and 
deployment directives. Modeling notations are defined by metamodels together with a tem-
plate-based approach to textual output specification (i.e. presentation model). Target plat-
forms are also described in terms of metamodels. Improvements may be defined by tooling 
(object administrator generation), or by enhancing the model (by specifying presentation). 

Figure 3.24: Graphical Representation for Figure 3.23
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Code generation and deployment are also handled by the tool in accordance with directives 
given by a deployment model. Netsilon even integrates some consistency checking at code 
generation time to enforce coherence of the model.

A second aspect of Netsilon is that it was built using a metamodeling philosophy. 
Although neither model repositories nor model transformations were available at that time, 
it defines some new DSL languages. To do so, it uses internally metamodels (described by 
Java classes, or ANTLR trees), and applies transformations (written in Java). Note that 
model transformations may be considered as a mean to specify semantics when it targets a 
language that defines semantics [KW03], for instance by targeting PHP (which has seman-
tics through interpreter) or Java. Such architecture allowed a clear separation of internal 
Netsilon software components (with metamodels as interfaces), and facilitated communica-
tion among developers. However, it underlined some practical limitations of the LDE
approach. Netsilon basically introduces a set of modeling languages, either textual or graph-
ical, either build from scratch or as improvement of existing ones. Examples are the busi-
ness model, which is a slight refinement of UML class diagrams, the hypertext model, 
which is a completely new graphical language, and Xion, which is a textual language mix-
ing concrete syntax and semantics of OCL and Java. If ideas were new, the new languages 
introduced a relatively few number of really new concepts. Nevertheless, development 
required around 10 men-years and more that one hundred thousand lines of code. This poor 
productivity relative to purely technical novelties can be explained by a lack of tools and 
standards to apply model-based language engineering. If some techniques has evolved since 
then, especially regarding the definition and handling of abstract syntax (e.g. metamodeling 
languages, model transformation languages, metamodel merge, profiling and higher-order 
hierarchies [Ern03] - see appendix A), there still lacks some industry-quality mean and well 

Figure 3.25: The Netsilon LDE Process
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agreed standard to specify and use a concrete syntax, and to state and/or compose language 
semantics. The purpose of this thesis is to find specification techniques to cover both speci-
fication of textual and graphical concrete syntaxes. Moreover, we explore in appendix A
some preliminary directions regarding reusability of semantically-rich elements (namely 
abstract syntaxes and model transformations).

An interesting result of Netsilon is that the business model may be used as a meta-
modeling language. If done so, the hypertext model (including that one generated for object 
administrator) may be compared to a representation specification. Moreover, an extension 
to the metamodel for abstract syntax is necessary to handle representation data. The 
deployed web application may be compared to a model representation engine. An advan-
tage is that any metamodel and any textual representation (and representation language) 
may be used together: classical use of Netsilon prescribes HTML as target representation, 
but some other experiments showed that the model (i.e. the abstract syntax graph) may be 
represented in HUTN [MH05], and one may imagine some new transformation from busi-
ness model to hypertext model that would generate an XMI representation instead of an 
object administrator. We experienced custom generation of SVG/DOM Javascript represen-
tations which showed that, with that price of adding new classes for handling representation 
data, one may depict and even alter a model. However, this approach is not a comprehensive 
mean to represent model as it is a generative approach only. Indeed, if one may “pretty-
print” a model according to a given text structure and representation data, the process may 
not be reversed to construct a model from a textual specification. Situation is even worse 
regarding graphical representations: generated text must be a graphical specification that 
has to be regenerated in case any information is updated, be it about the model or the repre-
sentation. We propose in chapter 4 a new approach, inspired from Netsilon concepts, in 
order to have a reversible textual representation for a model. A second new approach to 
graphical concrete syntax definition, based on SVG templates, will be developed in 
chapter 5.
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Chapter 4:

Textual Concrete Syntax
Textual concrete syntaxes are traditionally expressed with rules, conforming to EBNF-like 
grammars, which can be processed by compiler compilers to generate text processors. 
Unfortunately, these generated text processors produce concrete syntax trees, leaving a gap 
with the abstract syntax defined by metamodels. This gap is usually filled by time consum-
ing ad-hoc hand-coding. We have seen in previous chapter a mean to represent a model by 
using a model-based specification to organize text templates. However, this approach han-
dles only one direction, from model to text. In this chapter we propose an improved kind of 
specification for concrete syntaxes that takes advantage of metamodels to generate tools 
(such as parsers or text generators) which directly manipulate abstract syntax trees. The 
principle is to map abstract syntaxes to concrete syntaxes via rules à la Netsilon that 
explain how to render an abstract concept into a given concrete syntax, and how to trigger 
other rules to handle the properties of the concepts. In contrary to Netsilon, rules are 
reversible thus permitting both analysis and synthesis of models from texts.

This work was presented at the MOLDELS conference held at Gen-
ova in 2006 [MFF+06], after some preliminary study available in 
the LGL-REPORT-2006-005 technical report of EPFL [FSGM06].

4.1 Introduction

While metamodeling is now well understood for the definition of abstract syntax, formal 
definition of concrete syntax is still a challenge, even though some authors consider con-
crete syntax definition as an important part of metamodeling [AK02].

Being able to parse a text and transform it into a model, or being able to generate text 
from a model are concerns on which more and more attention is paid in industry. For 
instance Microsoft with the DSL Tools [GSCK04] or Xactium with XMF Mosaic 
[CESW05] in the domain-specific language engineering community, are two industrial 
solutions for language engineering that involve specifications used for the generation of 
tools such as parsers and editors. A new OMG standard, MOF2Text [CIM+06], is also 
being developed regarding textual rendering of an abstract syntax graph.

Here is described an evolution of the previous chapter, in which we saw that a specifi-
cation may formally describe how a model is to be represented. The philosophy is pre-
served, in that we used a metamodel-based approach, with composition and choice 
mechanism based on an action language. However, we redesigned the system to target a 
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slightly different goal, that is defining reversible textual representations, i.e. being able to 
generate text from model and to generate model from text. Moreover, we introduce con-
cepts that are dedicated to this goal, and we remove concepts dedicated to web application 
modeling (e.g. link decision centers, and session management).

The work presented in this chapter was implemented by two tools. The fist one is 
named Sintaks (which stands for syntax in Breton, a Celtic language) and takes place in the 
context of the Kermeta project [Fle06]. Kermeta is an executable DSL (Domain Specific 
Language) for meta-modeling, which can be used to specify both abstract syntax and opera-
tional semantics of a language. Together, Kermeta and Sintaks provide a comprehensive 
platform for model-driven language engineering. The second tool, TCSSL tools, was devel-
oped at the French Atomic Commission (CEA). It provides a pretty printer, and generates a 
compiler compiler specification able to build a model from a text.

The chapter is organized as follows: after this introduction, section 4.2 presents our 
motivation and examines some related works, section 4.3 presents our metamodel for con-
crete syntax, and explains the mechanics which are behind. Section 4.4 presents two exam-
ples which illustrate the way concrete syntax can be modeled and associated to models of 
the abstract syntax. Section 4.5 provides an overview of the prototype implementations. 
Finally section 4.6 draws some general conclusions.

4.2 Motivations

We present here the context of the work, and we identify what are the requirements for the 
specification we propose.

4.2.1 Abstract Syntax versus Concrete Syntax

As previously said, defining a language can be decomposed into three related activities: 
defining the syntax, the semantic domain, and the mapping between syntax and semantic 
domain. D. Harel and B. Rumpe give a good introduction to the issues surrounding these 
activities in their paper about defining complex modeling languages [HR04]. In this part we 
focus on syntax definition; defining semantic domain and mapping syntax to semantic 
domain is out of the scope of the work presented in this thesis.

Syntax can be further decomposed into abstract syntax and concrete syntax. Abstract 
syntax describes the concepts of a given language independently of the source representa-
tion (concrete syntax) of that language and is primarily used by tools such as compilers for 
internal representation. Concrete syntax, also called surface syntax, provides a user friendly 
way of writing programs; it is the kind of syntax programmers are familiar with.

Object-oriented meta-modeling languages (such as EMOF, Ecore or Kermeta) can be 
used for representing abstract syntax; concepts of languages are then represented in terms of 
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classes and relations. A given program can be represented by a model conforming to the 
meta-model which represents the abstract syntax of the language used to write the program. 
Writing this program, in other words building the model which represents the program, 
requires some way to instantiate the concepts defined in the meta-model.

This can be achieved either at the abstract syntax level, or at the concrete syntax level. 
The difference is that in the first case, the user has to manipulate the concepts available in 
the meta-modeling environment (for instance via reflexive editors) while in the second case, 
the user may use a surface language which is made of those concepts. While the end-result 
is the same, it is much simpler for users (such as programmers) to write programs in terms 
of concrete syntax, rather than directly using instances of meta-modeling concepts.

For textual languages, there must be some way to link the information in the text (the 
concrete syntax) with the information in the model (the abstract syntax). We have seen in 
section 2.2.1 on page 26 that the issue of analyzing text to produce abstract syntax trees had 
already received much attention in the compiler community. Most notably, efficient tools 
are available to generate parsers from EBNF-like grammars. Unfortunately, these generated 
parsers produce concrete syntax trees, leaving a gap with the abstract syntax defined by 
meta-models (under the shape of graphs), and further ad-hoc hand-coding is required.

In the next sections we propose a new kind of specification for concrete syntaxes, 
which takes advantage of meta-models to generate fully operational tools (such as parsers 
or text generators). The principle is to map abstract syntaxes to concrete syntaxes via bidi-
rectional mapping-models with support for both model-to-text, and text-to-model transfor-
mations.

4.2.2 Model-Driven Compilers

As stated in section 2.1.3.3 on page 23, code generators are usually built for one specific 
source language (e.g. UML) read as model, and for one specific target language generated 
as text (e.g. Java). This two-dimensions dependency outnumbers the necessary code gener-
ators by a cartesian product factor. Moreover, appendix A shows that this architecture can 
raise several problems when source model needs to be customized, for instance when using 
a profile.

We believe that a better approach would be to pass through an intermediate model. In 
the example of a Java code generation from a UML model, the approach we propose would 
be the following: the UML model would be transformed into a Java model through a model 
transformation, and then the Java model would be synthesized into Java text files by mean 
of a code generator. Advantage of this approach is that the semantic domain translation is 
achieved by a model transformation, which is a dedicated technology, while code generators 
need to deal with the concrete syntax of the target language. The process separates two dis-
tinct tasks (transformation and synthesis) that are performed using appropriate tools.
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In case of compilers, a source textual specification expressed in a language A has to 
be transformed into a target textual specification in language B. To perform this task using a 
model-based approach to benefit from model transformation technology, an additional step 
is required compared to model to text transformation: source code must be analyzed into a 
model, for instance by mean of a text processor. Problem with that approach is that, for a 
given language L, one needs to provide either a text analyzer, in case L is source language, 
a text synthesizer, in case L is target language, or even both, in case L may indifferently 
play the role of source and target language. In this latter case, which appears for instance in 
round-trip engineering processes, analyzer and synthesizer have to be consistent. This chap-
ter proposes to define synthesizer and analyzer using a unified specification.

Process for compiling a specification given in the A language into a B specification is 
given in figure 4.1. In the MDA terminology, white models reside at the M2 level (meta-
level) and grayed models reside at the M1 level. Example for A/B couples are Java/C++, 
UML (represented with HUTN or XMI)/Java, and B/C++. One may notice that in these 
examples Java may play the role of a source or a target language. A textual A specification 
is analyzed into an A model. The A model is transformed into a B model, and the B model is 
synthesized into a B representation. It is interesting to see that if the A/B transformation is 
reversible, one may reverse the complete process (from B textual representation to A textual 
representation) with no additional development.

4.2.3 Related Works

As seen in section 2.2.1 on page 26, text structure may be captured by grammars expressive 
enough to be specification for automatic text processor generation (compiler compilers). 
Our problem is to relate text structure to a metamodel, which is a work that is usually per-
formed by hand.

Figure 4.1: Model-Based Compiler Architecture
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Section 2.1.3.4 on page 24 took a rapid tour of existing techniques related to meta-
modeling. We did not consider model interchange, such as XMI or HUTN, or works like 
[AP04, GRS06], as being flexible enough. If they actually relate a metamodel to some text 
structure, there is little choice in the form this text structure is given. Oppositely, xText 
[Voe06b] and Gymnast [Dal05] make it possible to describe any text structure, but there is 
little choice in the form the metamodel is given.

Code generators, presented in section 2.1.3.3 on page 23, including Netsilon, pre-
sented in chapter 3, only solve half of the problem (synthesis). Indeed, they are only able to 
provide a textual representation for a given model, without the possibility to reverse the 
operation. AntiYACC [HRS02] is a tool that performs code generation, or more precisely 
text representation, taking advantage of EBNF. XBNF [CESW05] is another tool that solves 
the other half of the problem (analysis), that is getting a model from some text. However, to 
come up with a complete solution, one need to provide two different specifications that 
have to be kept consistent.

TCS [JBK06] is a textual concrete syntax specification language that was developed 
in parallel of the approach proposed here, almost at same time. TCS targets the same prob-
lem and proposes a comparable solution. Difference is that they do not make their meta-
model explicit and expose only a concrete syntax for TCS. Moreover, their principle is to 
"bridge" modelware and grammarware technological spaces [KBA02] by using compiler 
technology, similarly to what we achieved in the TCSSL Tools. We tried another mecha-
nism in Sintaks and results are reported in section 4.5.

TEF [Sch07] is a novel framework that is not released yet. It proposes a simple tem-
plate-based approach to defining textual concrete syntax on top of metamodels.

4.2.4 Requirement for Bidirectional Mapping

Modeling the mapping between abstract and concrete syntax means expressing how a given 
piece of information can either be stored into an object model (considering that we used 
object-oriented meta-languages to define the abstract syntax) or represented in text (as we 
focus on textual concrete syntax). One must consider that there is no one-to-one mapping 
between abstract and concrete syntax, and further, that there is no single solution either to 
store information in a model or to represent it in text.

The multiple ways to capture information into an object model are genuinely 
addressed by object-oriented meta-models. Elementary information can be modeled as a 
class, an attribute, a relation, or a role. Attributes, relations, and roles may be shared among 
classes (and relations) in presence of inheritance. Storing more complex information in a 
given model is then achieved by creating clusters of instances of the modeling-elements 
defined in their corresponding meta-model. 

As seen earlier (section 2.2.1 on page 26), representing information in text follows 
structures known as grammars. Building a mapping between models and texts therefore 
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implies understanding how information can be mapped between models (graphs of 
instances) and texts (sequences of characters).

An instance of modeling element, just as an object, is characterized by an identifier 
and a state. In an object model, state is stored in the slots of the instances (i. e. values, either 
of primitive types, or references to other instances of modelling-elements). 

Going from abstract syntax to concrete syntax (or the reverse) is then a matter of 
explaining how pieces of abstract syntax (i. e. values held by slots of modeling elements) 
are to be serialized (or conversely de-serialized) to pieces of concrete syntax (actually char-
acter strings, as we target textual concrete syntaxes). 

This means that, in addition to what traditional text analysis tools provide (e.g. termi-
nal, sequences, and alternatives), concrete syntax definition should also offer the possibility 
to state how individual slots of instances of modeling elements are mapped to concrete syn-
tax.

4.2.5 Towards a Specification

Let's consider the meta-model in figure 4.2 of a language which defines models as a collec-
tion of types where types have attributes, which in turn have a type. A possible model and a 
possible representation for it is given in figure 4.3.

The metamodel on figure 4.2 defines the abstract syntax (the concepts of the lan-
guage), but nothing is said about concrete syntax. Therefore we have introduced the concept 
of template which is associated to meta-classes. Each instantiable modeling element (i. e. 
each concrete meta-class in the meta-model) defines a template whose role is to organize 
the serialization (de-serialization) of the instances of its (meta-)features, regardless if they 
are defined in the meta-class or inherited. Each (meta-)feature further defines a feature-
mapper, which knows how to fill a given slot with elementary data coming from a text (and 
conversely, how to generate text from the data).

Templates should also embed facilities for iteration (repeating the same sequence a 
given number of times, following the example of Netsilon Iterative Composer decision cen-
ters) and for alternatives (alternate textual representations according to a given constraint, 
following the example of Netsilon decision constraints). Moreover, it must be possible to 
define the value of a slot depending on an alternative; for instance, setting a slot to true or 
false depending on the occurrence of a given sequence of tokens in the textual representa-
tion (or conversely, generating a given sequence of tokens depending on the value of a slot). 

Figure 4.2: Abstract Syntax of a Simple Language
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Alternatives can also be used to specialize children class descriptions based on a single 
mother class.

Beyond the basic alternative and sequence capabilities, the various mapping options 
are described by 3 major properties of the feature-mappers: the kind of values held by the 
slots, the multiplicity of the information to be represented, and the way to share and param-
eterize feature-mappers. These properties are presented in detail in the following subsec-
tions.

4.2.5.1 Kinds of Data

Slots may contain three different kinds of data: 

• Attributes values which refer to primitive types; i. e. either data types (such as String, 
Integer, Real, and Boolean) or enumerations. A single-value feature-mapper, with 
automatic type translations (to and from text) can handle these attributes.

• Compositions which physically embed the slots of the contained instance of model-
ling-element into a slot of the containing instance. Representing such relation can be 
realized straightforwardly by embedding the template of the owned meta-class into 
the template of the owning meta-class.

•  Simple references are a little bit more subtle a problem, and denote that a source 
instance of a modelling-element refers to a target instance of another modelling-ele-
ment, using a given key which is in fact a specific slot value. In practice, the textual 
representation of the referenced instance of modelling-element may appear after the 
representation of the reference, as in the example presented in figure 4.2 where Type
String is represented after the Attribute Name of Type User, whose type is 

Type Mail { 
   From : User 
   To : User 
} 

Type User { 
   Name : String  
} 

Type String;

Figure 4.3: Example of Model and a Expected Textual Representation
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String. This referencing capability is also required to implement bidirectional asso-
ciations (A references B which in turn references A).

4.2.5.2 Multiplicity of the Data

Features are either mandatory or optional, and single or multiple. The optional nature of a 
feature is rendered by the lower bound of the multiplicity (0 for optional, and 1 for manda-
tory), the single/multiple nature is rendered by the upper bound (1 or *).

• Representing the mandatory/optional nature can be done by reusing the alternative 
rule: optional information will be represented by an alternative with an empty branch.

• Representing the single/multiple nature can be done by using either a single value fea-
ture-mapper or an iteration.

4.2.5.3 Shared and parameterized feature-mappers

In practice, properties for different classes often share the same concrete syntax. This is 
especially true regarding inherited properties. Thus, it may be interesting to introduce 
shared definition in the feature-mapper. Feature-mappers may then be defined outside the 
scope of given meta-class template, and further called by several meta-class templates; in 
the same way a procedure may reference a sub-procedure in an imperative language. 

Two cases may be distinguished, representing whether a feature-mapper knows the 
feature to map or not. The first case typically allows reusing the mapper for the same feature 
within an inheritance hierarchy of meta-classes. The second case (we talk about parameter-
ized feature-mappers) permits to share the same feature-mapper not only by different tem-
plates but also by different features, even across meta-class hierarchies.

4.3 Modeling Concrete Syntax

As seen in the previous section, when defining a language, the meta-model of the abstract 
syntax has to be complemented with concrete syntax information. In our case, this informa-
tion will be defined in terms of another meta-model, which has to be used as a companion of 
the metamodel already used for defining the abstract syntax of the language under specifi-
cation.

Figure 4.4 summarizes the approach, and shows how a tool can automate both analy-
sis and synthesis. Following the MDA terminology, grayed items reside at M1 level (model 
level), white items reside at M2 level (metamodel level), and black items at the M3 (meta-
metamodeling) level. At runtime, the models of abstract and concrete syntax are interpreted 
by a generic machine (written only in terms of both meta-models) which performs the bidi-
rectional transformation between texts and models. Figure 4.4 can be compared with 
70



Textual Concrete Syntax
figure 1.2 on page 7. Generic analyzer and synthesizer corresponds to the reversible text 
processor.

Fully defining the syntax of a language is achieved by combining the abstract syntax 
meta-model with one or more concrete syntax model(s). The effect of parsing a text (con-
forming to a concrete syntax model) is to create a model (conforming to the abstract syntax 
meta-model). Conversely, the text can be synthesized from the model.

Interestingly, both processes of analysis and synthesis are highly symmetric, and since 
they share the same description, they are reversible. Indeed, a good validation exercise is to 
perform two synthesis-parse sequences, and observe that there are no significant differences 
in both generated texts.

4.3.1 Overview of our Proposal

Our meta-model for concrete syntax is displayed on figure 4.5. Given concrete syntax has a 
top-level entry point, materialized by the TCSSpec (Textual Concrete Syntax Specification) 
class which owns top-level rule fragments and meta-classes. A model of concrete syntax is 
built as a set of rules (the sub-classes of abstract class Rule). The bridge between the meta-
model of a language and the model of its concrete syntax is based on two meta-classes: 

Figure 4.4: Automatic Bidirectional Model Representation
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Class and Feature referencing the class of the abstract syntax metamodel and their prop-
erties, respectively. Class Template makes the connection between a class of the meta-
model and its corresponding rules. Class Value (and its sub-classes) and class Iteration
make the connection between the properties of a class and their values. Class Iteration
is used for properties whose multiplicity is greater than 1. The remaining classes of the 
meta-model provide the usual constructions for the specification of concrete syntax such as 
terminals, sequences and alternatives.

The following sub-sections detail the semantics associated to each elements of our 
concrete syntax meta-model. Semantics is given in plain English by providing a short 
description and an overview of the behavior at analysis and synthesis time.

Figure 4.5: Overview of the Metamodel for Textual Concrete Syntax
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4.3.1.1 Template Rule

A Template rule makes the connection between a class of the metamodel (property 
metaClass) and a sub-rule.

Analysis semantics: The template specifies that an object should be created. The 
metaclass is instantiated and the object (i.e. the concept occurrence) is set as the current 
object (self). The sub-rule is invoked and the current object is initialized. If an error 
occurs the current object is dismissed.

Synthesis semantics: The template specifies which object to serialize. The sub-rule is 
invoked to generate the corresponding text.

4.3.1.2 Terminal Rule

A Terminal rule represents a text whose value is constant and known at modeling time. 
The text value is stored in the property terminal of type String in class Terminal. It is 
the counterpart of EBNF terminals.

Analysis semantics: The text in the input stream must be equal to the terminal value. 
The text is simply consumed. If the text does not correspond an exception is thrown.

Synthesis semantics: The terminal value is appended to the output stream along with 
formatting information, such as white spaces.

4.3.1.3 Sequence Rule

A Sequence rule specifies an ordered collection of sub-rules. A sequence has at least one 
sub-rule. It is comparable to classic EBNF concatenations.

Analysis semantics: The sub-rules are invoked successively. If any sub-rule fails the 
whole sequence is dismissed.

Synthesis semantics: The sub-rules are invoked successively.

4.3.1.4 Iteration rule

Iterations specify the repetition of a sub-rule an arbitrary number of times. An iteration 
uses a collection (property container of type Feature), and may have a terminal to be 
used as a separator between elements (property separator of type Terminal). It is the 
counterpart of the Netsilon iterative composer, with that difference we rely on an object 
property (reference), instead of a complex expression. However, for complex expression, 
one may refer to derived properties if model repository supports it.

Analysis semantics: The sub-rule (and separator, if specified) is invoked repetitively, 
until the sub-rule fails. For each successful invocation the collection specified by the con-
tainer feature is updated.
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Synthesis semantics: The sub-rule is applied to each object in the referenced collec-
tion, and the optional separator (if specified) is inserted between the texts which are synthe-
sized for two consecutive elements.

4.3.1.5 Alternative rule

Alternatives capture variations in the concrete syntax. An alternative has an ordered set 
of Conditions which refer each to a given sub-rule. A boolean expression in a query lan-
guage may constrain choice for the correct condition. Queries may be written using lan-
guages like OCL, KerMeta, MTL, Xion, or even JMI Java code; for instance TCSSL tools 
uses EMF Java code, and Syntax defines its own language for comparing a feature with a 
value, or testing the object’s metaclass. One may compare alternatives with Netsilon deci-
sion centers, and conditions to decision constraints.

Analysis semantics: This is the most complex operation. Often there is no clue in the 
input stream to determine the condition (in the sense defined in the metamodel for textual 
concrete syntax) which held when the text was created. It is therefore necessary to infer this 
condition while parsing the input stream. The simplest solution (but also the most time con-
suming) is to try each branch of the alternative until there is a match. If TCSSL tools require 
alternatives not to be ambiguous following principles of LL(k) parsing, Syntax implements 
such backtracking algorithm (see section 2.2.1 on page 26). It is worth noticing that in the 
latter case, the conditions’ order can also be used to handle priorities between conflicting 
sub-rules. Conditions’ queries should be enforced once the analysis is completed. If Syntax 
does not make use of the conditions’ queries at analysis, TCSSL tools force them to be a 
comparison with an attribute: at analysis, the comparison is interpreted as an affectation. 
More experiments should decide whether constraint solving or constraint enforcement are 
helpful in choosing an alternative.

Synthesis semantics: The conditions are evaluated in the order defined in the collec-
tion, and the first one which evaluates to true, triggers the associated rule.

4.3.1.6 PrimitiveValue rule

The rule PrimitiveValue specifies that the value of a feature is a literal. The type of the 
referenced feature should be a primitive type such as Boolean, Integer or String. It is the 
counterpart of the Netsilon value displayer decision constraint.

Analysis semantics: The literal value corresponding to the type of the feature is 
parsed in the input stream. The result is assigned to the corresponding feature of the current 
object unless the type conversion failed.

Synthesis semantics: The value of the feature in the current object is converted to a 
string and appended to the output stream.
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4.3.1.7 ObjectReference rule

This rule implements the de-referentiation of textual identifiers to objects. Identifiers (such 
as names or numbers) are used in texts to reference objects which bear an attribute whose 
value contains such identifiers.

Analysis semantics: The reference which is extracted from the input stream is used as 
a key to query the model so as to find a matching element. If there is a match, the parser 
updates the element under construction. If there is no match, the parser assumes that the ref-
erenced item does not yet exist (because it might be defined later in the text) and creates a 
ghost to be referenced in place, and finally updates the element under construction with a 
reference to that ghost. By the end of the parsing process, all ghosts have to be resolved 
unless there is a parsing error.

Synthesis semantics: The identifier is printed to the output stream.

4.3.1.8 RuleRef rule

The rule RuleReference references a top-level template, stored under the root of the con-
crete syntax model, i.e. a TCSSpec occurrence. It is the counterpart of the Netsilon com-
poser.

Analysis semantics: The ref rule is triggered and the result is assigned to the feature 
of the current object if defined, or passed as the resulting object of the rule (e.g. when 
included in an Iteration).

Synthesis semantics: The ref rule is triggered.

4.3.1.9 Action side effect

An action is an instruction that has a certain impact on the model. Following the example of 
BooleanQuery, it may be written in any language capable to impact a model. Examples of 
such languages are KerMeta, Xion, and JMI Java code.

Analysis semantics: The action is performed on model at the end of the rule applica-
tion. The contextual object (self) is the one of the rule.

Synthesis semantics: Action is merely ignored.

4.4 Examples

The following section shows how the concrete syntax metamodel is used for specifying 
concrete syntax.
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4.4.1 A very simple example of concrete syntax specification

Going back to our small language example of figure 4.3, we will now use our meta-model 
of concrete syntax to specify the textual representation. In the example, there is no specific 
materialization of the model in the text. A type is declared by a keyword followed by a 
name and an optional collection of attributes. A collection is denoted by curly braces; an 
empty collection is specified by a semi-column. Notice that the notation allows forward ref-
erences to User and String.

A straightforward model of this concrete syntax is shown in figure 4.6. In this model, 
there is only one top-level rule which describes the concrete syntax of the language. The 
model  is built as a cascade of rules. The model starts with an iteration over types . The 
sequence explains that types start with the keyword "Type" , followed by a name , and 
then an alternative  whose conditions are expressed in OCL, because types may have a 
collection of attributes. The collection of attributes is expressed by an iteration , which in 
turn contains a sequence made of a name, followed by a separator (terminal ":") and finally 
a reference to a type according to this latter’s name . Attributes, when present, are delim-
ited by curly braces. If  is an example for a mandatory attribute mapper,  is an example 
for an optional multiple reference mapper, as classified in section 4.2.5.1.

Often, it is desirable to share some part of the concrete syntax. Therefore templates do 
not have to be nested, and can be defined individually at the top level of the model of the 
concrete syntax. Figure 4.7 represents such variation, for the same concrete syntax. Here, 
TT and AI rules are now owned by the root specification, and links between independently 
defined templates are realized with rule references (RuleRef). Actually,  and  are pro-
moted to shared feature-mappers. Both representations are totally equivalent. The parsed 
models or the generated texts are identical, and such transformation may be seen as a model 
refactoring using techniques as in [MB05].

root:TCSSpec

TMI:Iteration

TT:Template

rules

start

TM:Template

rule
AS:Sequence

AST1:Terminal

terminal = "{" subRules

:RuleRef
subRules

AST2:Terminal

terminal = "}" subRules

rules

:RuleRef

subRule

ref

AI:Iteration ref
rules

Figure 4.7: Variation with Top-Level Reusable Templates
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Figure 4.6: Straightforward Textual Concrete Syntax Model
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4.4.2 Statechart Textual Concrete Syntax Example

We propose here another example for the more complex statechart language. Statecharts 
[Har87] allow to represent state machines visually, but we propose here a textual version.

Statecharts are part of the UML specification [AAB+07]. Thus, concepts are already 
captured in the form of a metamodel. For sake of simplicity and readability, we will restrict 
ourselves to a simplified subset of these concepts, as shown by figure 4.8. State vertices 
might be connected by transitions. A transition has exactly one source vertex and one target 
vertex. A vertex is either a pseudo state (initial state, choice,...) or a state, which is in turn 
either a composite state (i.e. containing other vertices and transitions), a simple state, or a 
final state. Transitions are triggered by events. A state machine is given by its top state. Fig-
ure 4.8 presents those concepts and their relationships using MOF [ACC+06], the OMG 
language for defining metamodels. This metamodel is complemented with well-formedness 
rules in form of OCL constraints enforcing its correctness and its consistency. Two con-
straints are represented here using the OCL. Figure 4.8 shows 2 examples, the first con-
straint ensures that no final state is a source for any transition. The second constraint states 
that an initial pseudo-state has only one outgoing transition, and that it is never the target of 
a transition.

ModelElement

name : String

StateMachine

StateVertex Transition

State

Composite
State

Simple
State

Event

Final
State

PseudoState

kind : PseudoStateKind
«enumeration»

PseudoStateKind

initial
choice
...

1

1

source

target

outgoing

incoming

*

*

subvertex

*

0..1

container

top 1

0..1trigger

*

Figure 4.8: The Simplified Statechart Metamodel

context FinalState inv: self.outgoing->isEmpty() 
 
context PseudoState inv:  
(self.kind = PseudoStateKind::initial) implies 
((self.outgoing->size <= 1) and (self.incoming->isEmpty))
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An example for a language sentence is given in figure 4.9. The same sentence is rep-
resented using MOF to give a good overview of the model (i.e. the abstract syntax tree), and 
in a textual form that we propose to define here. The interested reader can find the same 
specification using the standard graphical notation in figure 5.3 on page 86. The modeled 
system is a door. It states that a door may be opened or closed. If door is closed, it may be 
locked or unlocked. For sake of readability, events were omitted in the MOF representation.

An excerpt of the textual concrete syntax we propose is shown in figure 4.10. The 
specification starts with a template rule SM for StateMachines. The rule is a sequence of 
a "StateMachine" terminal smt, the name of the state machine smn (Door in the example of 
figure 4.9), and a reference smtr to a rule S to provide the top state of the state machine. 
Rule S is an alternative between template rules for SimpleState and CompositeState, 
depending on the state kind, thanks to OCL oclIsKindOf queries ssq and csq. Template 
rule CS for CompositeState is a sequence of a rule reference init, which manages the 
optional "initial" keyword, a "CompositeState" terminal cst, the state’s name csn, and, 
between curly brackets ocb and ccb, an iteration CSS on contained states. CSS is making 
reference to the rule S, which thus makes possible, in the concrete syntax, to specify both 
composite and simple states within a composite state. This is the case in the example of 
figure 4.9 since the top composite state contains the opened simple state and the closed
composite state. The presence of the "initial" keyword ik is managed by the init alterna-
tive, which is a rule that is called by the CS rule. In case the "initial" terminal is recognized, 

StateMachine Door

CompositeState {

initial State opened

CompositeState closed {

initial State unlocked

State locked

Transition from unlocked

to locked on lock

Transition from locked 
to unlocked on unlock

Transition from unlocked 
to opened on open

}

Transition from opened 
to closed on close

}

:StateMachine

:CompositeState

:Transition

:PseudoState

kind=initial

opened:SimpleState

closed:CompositeState

:Transition

:Transition

:PseudoState

kind=initial

locked:SimpleState

unlocked:SimpleState

:Transition

:Transition

root

source

target
target

source

source

target

source

target

subvertex

subvertex

subvertex

subvertex

source

target

subvertex

subvertex

<=>

Figure 4.9: A Statechart Sentence and a Textual Representation
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Figure 4.10: Textual Concrete Syntax Specification for the Statechart Language
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the considered state should be an initial state. An initial state is a state which is targeted by a 
transition whose source is an initial PseudoState, following the examples of the opened
and unlocked states. This init alternative should also be referred to by a rule template 
for SimpleState, which is not represented in the figure, as a simple state may also be an 
initial state. Actually, we cheated with the metamodel in figure 4.5, as both the test query 
and the action to be taken make use of an isInitial attribute, which is not available in 
the statechart metamodel of figure 4.8. Instead, we should have defined a more complex 
query and a more complex action, which would have tested or updated the model properly. 
It is important to see that actions and queries should be kept consistent; we face here prob-
lem of over specification and coherence checking. Note that this attribute may be defined on 
the metamodel, as a derived attribute. However, this would pollute the metamodel to sim-
plify the concrete syntax specification process. In OCL, query to test whether a state is an 
initial state could be the following:
self.incoming.source->exists(s| s.oclIsKindOf(PseudoState) 

and s.oclAsType(PseudoState).kind = PseudoStateKind::initial)

In Xion, the action could be the following:
PseudoState init = new PseudoState(); 
init.kind = #initial; 
Transition t = new Transition(); 
t.source =  init; 
t.target = self;

4.5 Prototype Implementations

Two prototype tools were implemented following this approach, based on two variants of 
the metamodel we propose here: Sintaks and TCSSL Tools.

The Sintaks prototype is based on recursive descent, and realizes both analysis and 
synthesis of concrete syntax. It has been implemented on top of EMF in Eclipse. We have 
not been trying to achieve high parsing performance; we have simply been investigating 
how modeling could be used to describe concrete syntax. Queries are formulated in a dedi-
cated language able to test attribute values and object types. Actions are not supported. This 
prototype has been used to parse and pretty-print several DSLs.

TCSSL Tools was developed at CEA and is a set of two different tools that make use 
of the same concrete syntax specification. Actions are given as EMF Java instructions, and 
queries are attribute value comparison to a EMF Java expression. The first tool compiles a 
concrete syntax specification into a compiler compiler specification (namely ANTLR). The 
result is an LL(k) text processor that builds an EMF model from a textual representation. 
The second tool is a pretty printer. A concrete syntax was defined for the specification, and 
it was possible to create the parser with TCSSL Tools itself, thus following a bootstrapped 
81



Conclusion
approach. The tool made it possible to define a concrete syntax for UML Action Language. 
More implementation details about TCSSL Tools are available in [FSGM06].

Advantage of TCSSL Tools is to offer more flexibility in the defined syntaxes than 
Sintaks, as it embeds a more complex test and action mechanism. Its also more efficient as it 
makes use of the latest compiler compiler technology. The main drawback is the drawback 
of lookahead parser technology in general, and LL(k) in particular, that is neither able to 
backtrack in case of parsing error, nor to accept an ambiguous specification (as defined by 
the LL(k) technology) as input.

4.6 Conclusion

This work may be viewed as an experimentation for the specification of concrete syntax in 
the context of meta-modeling applied to language engineering. 

We have proposed a novel approach, based on meta-models, which supports a formal 
bidirectional mapping of both concrete-to-abstract, and abstract-to-concrete syntax. Our 
main contribution is the definition of a meta-model of the mapping between abstract syntax 
and concrete syntax.

Our work is obviously far from bringing definitive answers to the complex problems 
of applying meta-models to language engineering but, along with the capabilities of execut-
able meta-languages such as Kermeta, it suggests that languages can be fully specified in 
terms of meta-models, and that tools can be automatically derived from these meta-models 
to support these languages.

A lot of work is still beyond us to make tools based on this approach as robust and 
efficient as the one in the grammarware space. For instance, one important challenge would 
be to build a bidirectional and incremental text processor that would update the model when 
the text change, and that would update the text while the model changes. However, the pre-
sented material may contribute, with many other ongoing research works to a better under-
standing of metamodeling applied to textual language engineering.

Next chapter will explore the slightly different problem of graphical concrete syntax 
specification.[Voe06a]
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Chapter 5:

Graphical Concrete Syntax
Model Driven Development and Domain Specific Languages are two trends in software 
engineering which cause a proliferation of modeling languages when used together. New 
modeling languages need a precise specification of their syntax and semantics to gain 
acceptance. While metamodeling is a comprehensive mean for defining the abstract syntax, 
i.e. the concepts of a modeling language, most language specifications are held informally 
for the description of the semantic and for the (graphical) concrete syntax. This chapter is 
tackling the problem of defining graphical syntaxes on top of a metamodel stating abstract 
syntax using a two-step process: specification and realization. For the specification part, 
we propose to build a second metamodel to express concrete syntax. Declarative relation-
ships put in relation metamodel for the abstract syntax and metamodel for concrete syntax. 
Regarding realization, we propose to define in a constructive way shape of graphical ele-
ments using the XML-based standard Scalable Vector Graphics (SVG). Thus, the graphical 
representation of a model is an SVG document that may automatically be controlled using 
the Document Object Model (DOM) technology. In this part, we also identify a set of pre-
defined components making use of DOM that can participate to the SVG shapes for specify-
ing possible user interactions. Relationship between representation, defined in the 
specification step, and concrete syntax, defined in the realization step, is performed by 
events triggering action language scripts, such that the complete specification is machine 
understandable.

This chapter was partly published in the Model Driven Architecture 
- Foundations and Applications, First European Conference 2005 
[FB05] and is complemented by the bachelor semester projects 
[Hon05] and [RH06].

5.1 Introduction

Previous chapters introduced motivation for defining concrete syntax for modeling lan-
guages, for example in section 4.2.1 page 64. In the last chapter, we proposed a mean to 
define textual concrete syntaxes. In this chapter, we propose an approach to specify graphi-
cal concrete syntaxes for languages whose abstract syntax is provided as a metamodel. We 
use here metamodeling for modeling concrete syntax and the SVG [JN05] / DOM 
[HHW+04] technology regarding concrete visualization and interactions.

The approach is divided in two distinct parts: specification and realization. In the 
specification part, language engineer models a graphical concrete syntax in terms of a com-
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panion metamodel of the abstract syntax. This metamodel is intended to capture structure of 
representation data. In contrary to previous chapter, in which we fixed a semantically rich 
metamodeling language to concrete syntax definition, the graphical concrete syntax may be 
described using object-oriented metamodeling languages as MOF, KerMeta, EMF, or Alloy. 
The metamodel for concrete syntax can be improved by constraints for stating graphical 
rules regarding spatial relationships. To keep metamodels for abstract and concrete syntax 
consistent, we propose an approach making use of an intermediate matching metamodel, 
also extended by constraints. As a summary, goal of the specification part is to give all pos-
sible sentences of graphical concrete syntax in a restrictive way.

The specification step states the representation data and data coherence rules, and the 
task of icon definition and user interaction is let to the realization step. Do do so, we pro-
pose to define icons using the SVG language for two-dimensional vector graphics. User 
interactions may be defined in libraries of predefined DOM components capable to alter the 
representation. Relation between the specification and the realization is achieved through an 
event system: the execution of a DOM component may trigger an action on the representa-
tion data, and an alteration of the representation data may be listened by the icons. Finally, 
we should end up with a specification including abstract syntax, specification of concrete 
syntax and realization of concrete syntax. The complete specification may be interpretable 
by a tool, so that can be offered a CASE tool (i.e. a graphical modeling tool) for a such 
developed language.

Both from system engineers (who make use of the modeling language) and from auto-
mated processors (computer programs that create the model) viewpoints, major difference 
between textual and graphical language is that textual specifications are compiled, while 
graphical specifications are interactive. This means that if a textual specification is written 
and then transformed into a model (as seen in chapter 4), graphical specification is pro-
moted in the model on an incremental basis. Usually, model is built interactively while the 
system engineer interacts with CASE tool to graphically draw his/her specification (see 
section 2.2.2 on page 27). Advantage is that the CASE tool may reason on the model at 
same time it is built (e.g. a model element is created, two model elements are put into rela-
tion). One may remark that such an interactive technique is more and more applied to tex-
tual languages in modern IDEs which maintain an abstract syntax graph of the textual 
specification to support system engineers in code production. We propose here such an 
interactive technique to achieve the realization step that creates a model according to user 
interactions.

Figure 5.1 summarizes the approach. Following the MDA terminology, grayed items 
reside at the M1 level (modeling level), white items reside at the M2 (metamodeling) level, 
while black items reside at the M2 (metamodeling) level. Abstract syntax of the language is 
developed in terms of a metamodel to represent concepts and their relations (i.e. vocabulary 
and taxonomy). A concrete syntax is developed also in terms of metamodel. Neither 
abstract syntax has knowledge of concrete syntax, nor concrete syntax has knowledge of 
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abstract syntax: only bridge is an abstract to concrete syntax adapter which is in charge of 
keeping both models consistent. The abstract to concrete adapter has to be specifically 
developed for a given abstract syntax and a given concrete syntax. Major advantage is that 
neither abstract syntax is polluted by concrete syntax consideration, nor concrete syntax is a 
decoration for the abstract syntax. This makes it possible to reuse the same concrete syntax 
for different abstract syntaxes (e.g. class diagram notation which is in use in various lan-
guages and language versions as UML, MOF, Netsilon, Fondue, etc.). An abstract syntax 
may also define various concrete syntaxes (e.g. UML models that may be represented using 
Booch notation). Realization of the concrete syntax must clearly state what is the graphical 
appearance of elements of concrete syntax and how they may be manipulated (e.g. moved, 
resized).

Figure 5.1 can be compared with figure 1.2 on page 7. Abstract syntax, model, SVG 
templates, and DOM components are rendered in both figures. Concrete syntax corresponds 
to the graphical syntax metamodel ( ), while concrete syntax graph embodies the represen-
tation data ( ). The SVG document is that document which is rendered by SVG renderer. 
As detailed later, the synchronization between abstract and concrete syntax (A2C Adapter) 
will be performed by a mapping model ( ).

We first introduce two simple yet illustrative examples, the statechart and the chess-
board languages, in section 5.2 and provide an overview of the specification step in 
section 5.3. Then, we describe the realization step in section 5.3. We finish with comparison 
of related approaches in section 5.5 before concluding in section 5.6.

Figure 5.1: General Architecture
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5.2 Language examples

We give here an overview of two simple examples: statecharts and chessboards that are con-
nection-based and geometric-based languages, respectively.

5.2.1 Statecharts

The concepts of the statechart language as introduced in section 4.4.2 page 78 are repre-
sented by the symbols shown in figure 5.2. There is no need to define the StateMachine

symbol since a state machine cannot be represented. Figure 5.3 presents a statechart sen-
tence both as an instance of the statechart metamodel, and as an "instance" of its concrete 
syntax. For the sake of readability, events are suppressed in the metamodel instance.

Transition SimpleState Composite
State FinalState PseudoState

(initial)
PseudoState

(choice)

Figure 5.2: Symbols for the Statechart Concepts
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Figure 5.3: A Statechart Sentence and its Graphical Representation
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This simple example already reveals some of the weaknesses of informal concrete 
syntax definitions. The definition given figure 5.2 is incomplete because, for example, it 
was not stated yet that an event should be shown nearby the transition it triggers. Moreover, 
the name of a simple state should be contained in the representation. The same problem 
appears for the composite state: the name should be contained in the upper part of the com-
posite state icon, the lower part being reserved for the composite state contents, that is the 
representations of its sub-states. A transition representation (an arrow) has to go from the 
representation of the transition’s source to the representation of its target. Some symbols 
contain parameters (as event in Transition) as placeholders for additional information. It 
is, however, not specified yet where the information comes from, e.g. that the event 
attached to a transition is indeed that event that triggers the transition. Another problem is 
that there may be different icons for the same concepts, as for the PseudoState. Again, the 
choice, which in this particular case depends on the PseudoState kind, is not captured by the 
figures. It can also be the case that one icon may present some variants in its representation. 
For instance, it may be possible to represent a composite state without its name part, or 
without its contents part.

5.2.2 Chessboard

We define in figure 5.4 metamodel for a very simple language whose sentences are all pos-
sible positions of pieces on chess boards. A situation refers to a board, so we introduce the 
metaclass Board to represent the board concept. This board consists in 64 squares, so we 
introduce a metaclass Square and an association forcing each Board model element to be 

Piece
kind : PieceKind
color : Color

64 32

1 1

Square

x : Integer
y : Integer
color() : Color

«enumeration»
Color

white
black

«enumeration»
PieceKind

pawn
rook
knight
bishop
queen
king

Board

0..10..1 PieceResidence
context Square inv: 

1 <= self.x and self.x <= 8 
and 1 <= self.y and self.y <= 8)

context Board inv: 
self.square->forAll(sq1,sq2:Square| 

(sq1.x = sq2.x and sq1.y = sq2.y) 
implies sq1 = sq2)

Figure 5.4: The Chessboard Metamodel
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Chessboard
related to 64 Square model elements. Squares can be identified by their position; this is 
modeled by the x and y integer meta-attributes. Of course, Square model elements must 
define values for x and y between 1 and 8; that can be modeled with a constraint written in 
OCL. Moreover, two squares of the same board must not have the same position. Again, 
this can be stated by a constraint. Squares are also qualified by a color (black or white) 
that can be computed from their position; this can be represented using a meta-operation. 
The board also consists in 32 pieces, of a given color, and of different kinds: pawn, rook, 
knight, bishop, queen, and king; this can be modeled in a same way by introducing a 
Piece metaclass with a color and a kind attribute, together with an association. More-
over, if not captured, a piece resides on a square, thus preventing any other piece to occupy 
this square, as could be shown by a PieceResidence meta-association. If captured, a 
piece is aside and does not reside on any square. Some additional constraints should be 
defined to state the kind of pieces that have to be part of the game (16 pawns, 4 rooks, 2 
queens, etc.), but they have been omitted for sake of brevity. Of course, the presented 
abstract syntax is not at all the unique possible one for the chess board language. For 
instance, one could prefer avoiding the Square metaclass and directly assigning the posi-
tion to pieces.

Figure 5.5 is an attempt to provide a conforming model. It presents a Board model 
element, related to two Square model elements and one Piece model element. Each 
square is related to the piece by the mean of two links of the PieceResidence type. How-
ever, that model does not conform to the chessboard metamodel for three different reasons. 
First, the metamodel states that a Board model element must be related to 32 different 
Piece model elements and 64 Square model elements. In this case, the board is only con-
nected with one piece and two squares. Second, a piece is located on two different squares, 
which is not allowed by the PieceResidence meta-association 0..1 multiplicities: a 
piece must be located at most on only one square. Third, the two square abstract representa-
tions have the same position as indicated by the values they provide for the x and y meta-
attributes, thus violating the constraint depicted in figure 5.4.

:Square
x = 1
y = 8

:Piece
kind = #rook
color = #black

:Board

:Square
x = 1
y = 8

:PieceResidence
:PieceResidence

Figure 5.5: An Incorrect Chessboard Model
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Figure 5.6, on the contrary, depicts a correct chessboard sentence representation, but 
this time using the chessboard concrete syntax instead of raw instances of the metamodel 
given as object diagrams. An informal version of chessboard concrete syntax should illus-
trate the gap between the abstract and concrete syntax. Such a definition could state that (1) 
the board is displayed by the two, orthogonal x and y axes annotated with 1..8 and a..f, (2) 
the squares are represented by a white or gray square depending on the (derived) attribute 
color of the model element at a position between the two axes of the board according to the 
values of the x and y attributes; the size of the squares corresponds to the size of the board, 
and (3) the pieces that are not captured yet are shown at the corresponding squares by a fig-
ure of well-known shapes.

Note, that in the particular case of the chess board language the concrete syntax basi-
cally fixes the visual appearance of a sentence, i.e. an instance of the metamodel. Once the 
position and size of the board is fixed, the position of all other visual objects are determined 
and there is no alternative way to draw the sentence.

5.3 Concrete Syntax Specification

As shown by the statechart sentence in figure 5.3, each sentence of a language can be repre-
sented as an object diagram conforming to the language’s metamodel. While language defi-
nitions given in form of a metamodel are easy to read and to understand, the sentences of 
the language are not accessible by humans if given in form of object diagrams. This section 
will solve the problem of defining a concrete syntax contract, i.e. a more human-friendly 

Figure 5.6: A Chessboard Sentence
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representation for the sentences of a visual language. Missing information, as pointed in 
section 5.2, will be added, so that the representation will be defined in a non-ambiguous 
way what dramatically improves the language’s usability. For example, the concrete syntax 
contract definition for the statechart notation must allow representations as shown in the 
right part of figure 5.3 instead of raw instances of the metamodel given as object diagrams 
shown at the left of the figure.

It is worth to stress that our aim is different from the complete definition of a visual 
language that is often tackled by graph grammars. Our approach does not aim in defining a 
visual language from scratch but assumes that the abstract syntax of the language is already 
given.

Some languages intentionally allow different representations of the same sentence. 
Hence, we do not aim to define an algorithm able to display a sentence which is given as an 
instance of the abstract syntax in a more understandable, visual form. Our approach rather 
goes the opposite direction and allows to decide whether a given diagram is a correct repre-
sentation of a given object diagram or not. Thus, our approach sees the concrete syntax con-
tract as a specification how sentences can be displayed. The concrete syntax contract 
definition will be based on the same principles as well-known abstract syntax definitions 
given in form of metamodels and will yield an algorithm to decide the correctness of a rep-
resentation of a sentence. That is why this definition can be considered as a contract to be 
fulfilled by an representation tool, regardless its technology.

5.3.1 Scheme-based Definition of Concrete Syntax

The definition of a concrete syntax contract means to define (1) a visual language, i.e. visual 
elements with relevant attributes and relationships between them and (2) how the visual ele-
ments are connected to the concepts of the language they are supposed to represent. Figure 
5.7 gives an overview how both goals are basically achieved by our approach.

As stated before, language is given by its abstract and concrete syntax (for sake of 
simplicity, we forget here about semantics). Abstract syntax is defined in terms of meta-
model and a language sentence abstract syntax graph is a model conforming to that meta-
model. Concrete syntax is another metamodel with two different parts: display classes and 
display manager classes. The display classes are in charge of concrete representation by 
stating what are graphical elements to be displayed, and can also declare relevant attribute 
of their objects such as shape, color, size, position, attach regions, etc. For sake of reusabil-
ity, the display classes do not depend on the metamodel; display manager classes are in 
charge of putting them in relation. Concrete syntax graph of a sentence is given by a set of 
display objects, each being an instance of a display class, and a set of display managers as 
instances of display manager classes.

The formalism to define display classes is intentionally left open in the specification 
step, and should be introduced only in the realization step. However, as we will see later, 
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display classes are supposed to implement some operations corresponding to (spatial) rela-
tionships such as CONTAIN, OVERLAP, etc. We propose in section 5.4 an implementation 
based on SVG and DOM components. In other words, display classes are merely specifica-
tions of what the realization step is supposed to provide as a service. This approach is equiv-
alent to defining interfaces (specification) that are further realized by components 
(realization).

Mapping between visual objects and model elements is formulated by display man-
ager classes using a constraint mechanism. For each possible representable metaclass there 
exists a unique display manager class whose purpose is to restrict the way how instances of 
the metaclass, i.e. model elements, can be displayed. These restrictions are formulated as 
invariants written in OCL. Display managers are responsible for consistency between the 
abstract syntax graph (the model elements) and the concrete syntax graph (the display 
objects): a display object can exist only in the context of a model element.

5.3.2 Statechart Concrete Syntax

We illustrate our approach by formally defining the concrete syntax of the statechart nota-
tion whose abstract syntax was given in section 5.2.1.

Prior to giving the formal definition of the concrete syntax, an informal version of it 
should illustrate the gap between the abstract and concrete syntax, as already introduced in 
section 5.2:

 Problem 1: A text is shown on the top of transitions to explicit the triggering event if 
it exists;

 Problem 2: A text shows the name of a simple state;

Figure 5.7: Scheme Definition Architecture
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ConcreteSyntaxTree
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Figure 5.8: Statechart Schemes
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 Problem 3: To depict a composite state, depending on the viewer’s choice, either a 
text shows the name of the composite state, or a region shows the contents of the com-
posite state (i.e. its contained states), or both; in the latter case, the two regions are 
separated by a line;

 Problem 4: The plain side of the transition icon is connected to a representation of its 
source state; the arrow side is connected to a representation of its target state;

 Problem 5: The shape of a pseudo-state representation depends on its kind.
Figure 5.8 shows the architecture of the statechart concrete syntax definition. We have 

shown four display schemes related to four graphically representable concepts as defined in 
the metamodel: Transition, State, CompositeState, and PseudoState. Final-
State have been omitted for the sake of brevity. The other concepts are either abstract (as 
for ModelElement) and thus will be depicted by the scheme of their subclass, or cannot be 
graphically rendered (as for Event). The case of StateMachine is a bit particular since it 
can only be represented by a diagram, which is actually being defined by the schemes.

 As proposed in section 5.3.1, the schemes are defined using two layers. In one hand, 
the display classes, are contracts for the visualization tool/language. The main purpose of 
this layer is graphical rendering, i.e. iconic definition. In the other hand, the display man-
ager classes fill the gap between those display classes and the abstract syntax by connecting 
them explicitly. A display manager class is connected to exactly one metaclass through an 
me (for model element) association end; thus, there exist a display manager object for each 
model element representation.

The cardinality of the opposite association end has also its importance. In the case of 
figure 5.8, a Transition or a PseudoState model element can only be depicted once, 
because of the cardinality of the respective dm (for display manager) association ends. On 
the contrary, a SimpleState or a CompositeState model element may be represented 
several times with different instances of the display manager class (thus different instances 
of the display class).

5.3.3 Icon-definition within a Scheme

Besides the association to metaclasses, display manager classes are associated with display 
classes. For each display manager class there is always a standard association to the corre-
sponding display class with multiplicity 1 and role name vo (abbreviation for visual object) 
on the end of the displayed class. This reflects the fact that each display manager object is 
connected with exactly one main display object. This connected display object depicts that 
model element which is connected with the display manager as well. A display class defines 
through representation data how a model element is actually displayed in terms of shape, 
color, etc. It also provides some query facilities. Some standard queries (e.g. CONTAIN, 
OVERLAP), as introduced in section 2.2.2 page 27, are declared by the generic Graphi-
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calObject interface. This enforces that any custom display object (like SVGTransi-
tion, SVGText, or SVGContents) is capable responding the queries.

Display classes are specifications for the realization step, and do neither depend on 
the display managers classes, nor on the metaclasses. This enforces a relative independence 
of the realization language/tool from metamodeling concerns. Indeed, stakeholders con-
cerned by graphical rendering are rarely also specialists in language construction. This inde-
pendence mechanism is meant to ease the collaboration between domain specialists, whose 
concern is to describe the concepts of the language, i.e. the metamodel, and the graphical 
modelers who aim at graphically rendering the display objects. Moreover, this clear separa-
tion guarantees that neither concrete syntax architecture pollutes conception of abstract syn-
tax nor abstract syntax architecture pollutes concrete syntax conception. It also permits a 
better reusability of display classes for other concrete syntax.

Often, a model element is not displayed just by one atomic visual object but rather by 
a composition of such objects. However, all involved objects are arranged by one composi-
tion object whose class corresponds to the metaclass it should visualize. Figure 5.9 illus-
trates the definitions done in the display classes related to the metaclasses 
CompositeState and Transition.

The graphical representations for metaclasses CompositeState and Transition
are defined by the classes SVGCompositeState and SVGTransition, respectively. A 
display object of class SVGCompositeState may compose three objects to display the 
name of the state (SVGText), the region where the contained states can be arranged (SVG-
Contents), and the line separator (SVGLine). Those three graphical elements that take 
part in the SVGCompositeState display object are composed by the latter with multiplic-
ity 0..1. This means that the figure is still valid in the case that some parts are missing for 
depicting a composite state. 

<state name>

SVGCompositeState

name:SVGText
separator:SVGLine

contents:SVGContents

<event name>

SVGTransition
event:SVGText

start:SVGArrowEnd
end:SVGArrowEnd

Figure 5.9: The Composite State and Transition Icons
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Similarly, objects of SVGTransition are composed of one object to display the 
event and two objects representing attach points. The difference is that the composed 
objects of SVGArrowEnd are mandatory: it is an incorrect sentence of the statechart nota-
tion to show a transition with no arrow at the end. SVGPseudoState is a little bit different: 
there exist many radically different shapes to represent it. Each one of these shapes is repre-
sented by a display object (e.g. SVGInitial for an initial state, or SVGChoice for a 
choice) that inherits from SVGPseudoState. As SVGPseudoState does not represent a 
figure, it is declared as abstract.

Constraints have well proven their ability to help diagram layout activities [BEdLT04, 
MMM04]. In our example, there are also some issues in enforcing layout within the figures. 
For instance, problem 3 stated the conditions under the separator (display object) have to be 
part of the composite state rendering. This can be defined using a constraint as follows:
context SVGCompositeState 
inv: (self.name->notEmpty() and self.contents->notEmpty()) 
= self.separator->notEmpty()

Moreover, there are often condition rules for displaying object parts. For instance, the 
name, the contents and the separator part of the SVGCompositeState have to be 
contained by the representation of the root display object, here an SVGCompositeState
display object. This can be expressed by the following constraint:
context SVGCompositeState 
inv: self.name->notEmpty() implies self.contains(self.name) 
inv: self.contents->notEmpty() implies 

self.contains(self.contents) 
inv: self.separator->notEmpty() implies 

self.contains(self.separator)

The above constraints take advantage of the «standard» graphical relationship opera-
tion as defined in the GraphicalObject interface. This interface is realized by all display 
classes, such as SVGCompositeState. Since this situation is very common, we introduce 
stereotypes that can be placed on the compositions that relate parts of a main display object: 
the name of the stereotype indicates the operation responsible for checking the correct 
graphical composition of display objects. For instance, by stereotyping the association com-
posing SVGTransition to SVGText with <<nearby>>, we implicitly define the con-
straint stating that the triggering event name should be depicted near the path representing a 
transition.

Constraints are also able to cope with the representation variants. For instance, 
depending on the decision of the designer, a composite state may appear showing only its 
contents, only its name, or both. This decision is not related to the abstract syntax since it 
does not change the semantics of the so designed system. To specify this variance in the 
syntax, we introduce attributes, so called syntactic attributes, in the display manager. To 
render the composite state variants described in problem 3, we introduce the attributes 
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showName and showContents in class CompositeStateDM. The following constraint 
ensures that the syntactic decision of the modeler is enforced:
context CompositeStateDM 
inv: self.showName = self.vo.name->notEmpty()

inv: self.showContents = self.vo.contents->notEmpty()

It is not necessary to state again on the presence of the separator, since it is already 
coped by the previous constraints.

5.3.4 Constraint definition within a Scheme

The second part of a scheme for a metaclass imposes constraints restricting the relationships 
between model elements, display managers, and visual objects. These constraints are also 
formulated in OCL and attached as invariants to display manager classes. Problem 2 is a 
typical example: showing the name of the simple state in the right compartment of the 
depicting symbol is ensured by placing the constraint:
-- problem 2 
context SimpleStateDM 
inv: self.me.name = self.vo.name.text

Problem 1 (the event name near a transition symbol) and problem 5 (synchronizing 
the pseudo-state shape with its kind) also belong to that family of synchronizing model ele-
ments and visual objects problem:
-- problem 1 
context TransitionDM 
inv: if self.me.trigger->isEmpty() 
then self.vo.event->isEmpty() 
else self.vo.event.text = self.me.trigger.name 
endif

-- problem 5 
context PseudoStateDM 
inv: let kindAssociation : 

Set(TupleType(kind: PseudoStateKind, type : OclType)) = 
Set{Tuple{kind = PseudoStateKind::initial, 

type = SVGInitial}, 
Tuple{kind = PseudoStateKind::choice, 

type = SVGChoice}, 
…} in 

self.vo.oclIsKindOf( 
kindAssociation->any(t| t.kind = self.me.kind).type)

Some more advanced constraints which are attached to display manager classes aim 
to express rules in the concrete syntax that restrict the relationships between visual objects, 
e.g. that the visualization of a contained state is placed at the expected position in respect of 
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the position of its containing composite state. It is worthwhile to remember that display 
objects are concrete visual objects and thus ‘know’ about their position in the space. Thus, 
each display class has some attributes such as xPos, yPos encoding the position of the 
object in the space. However, this coordinate attributes are not of primary importance for 
the concrete syntax definition and are, thus, not shown. More important is rather the ability 
of display classes to decide based on the coordination attributes whether a display object is 
in a spatial relationship such as OVERLAP with another display object. In other words, each 
display class could implement an operation overlap(GraphicalObject):Boolean
with the well-known semantics. This is stipulated by the introduction of interface Graphi-
calObject declaring operations as overlap (see figure 5.8). The fact that each display 
class implements the interface GraphicalObject allows us to describe restrictions of the 
concrete syntax in form of restrictions on the spatial relationship between visual elements 
what is at the same abstraction layer as visual elements are usually characterized when 
defining a visual language. So, the constraints for expressing the problem 3 (containment of 
composite state), and problem 4 (transition start and end connections) are:
-- problem 3 
context CompositeStateDM 
inv: self.vo.name->notEmpty() implies 

self.me.name = self.vo.name.text 
inv: self.contents->notEmpty() implies 

self.me.subvertex->includesAll(State.allInstances().dm 
->select(sdm|self.vo.contains(sdm.vo)).me)

-- problem 4 
context TransitionDM 
inv: self.me.source.dm.vo->one(svo|self.vo.start.connects(svo)) 
inv: self.me.target.dm.vo->one(svo|self.vo.end.connects(svo))

It is interesting to notice that, at that specification level, there is no fundamental dif-
ference between schemes rather describing a node (as the scheme for simple state) and 
schemes rather describing a relationship (as the scheme for transition). Constraints forces 
the symbols to keep connected if necessary.

5.3.5 Chessboard Concrete Syntax

We apply here the above-described technique to define the concrete syntax of the geomet-
ric-based chessboard language as introduced in section 5.2.2.

The informal definition of the concrete syntax of the chess board language can be for-
malized using display schemes as shown in figure 5.10. A display scheme is defined for 
every metaclass in the metamodel and consists of exactly one display manager class that 
usually carries many invariants, and some display classes.
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Figure 5.10: The Chessboard Schemes
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Each metaclass is connected with its display manager class with an association which 
has always multiplicity 1 and role name me (for model element) on the end of the metaclass 
and usually multiplicity 1 and role name dm (for display manager) on the end of the display 
manager class. This latter multiplicity states that each model element must appear in the 
representation. For instance, the association between metaclass Board and its display man-
ager class BoardDM indicates, that for each model element of type Board exactly one dis-
play manager object exists. The only exception is Piece which may not appear in the 
representation in case it was captured: in this case, the piece still exist in the model (abstract 
syntax graph), but should not appear in the representation of the chessboard. It is easy to 
express that pieces are displayed only if they are not captured yet using a constraint as 
shown in section 5.3.4 (note that the constraint cannot use PieceDM as a context, but has to 
be stated on the display manager class instead):
context Piece inv: self.dm->size() = self.square->size()

As for the statechart language, display managers are connected to display classes 
which represent the iconic part. Figure 5.11 illustrates the definitions done in the display 
classes related to the chessboard metamodel of figure 5.4.

The graphical representation for metaclass Board and Square is defined by the class 
SVGBoard and SVGSquare, respectively. A display object of class SVGBoard composes 
three objects to display the axes (BoardAxes), the region where the squares of the board 
will be arranged (BoardSquareRegion), and the attach zone of this region (BoardAt-
tach). It is the responsibility of the SVGBoard object to ensure that the auxiliary objects 
for the displaying the axes and square region are always arranged the way as shown in 
figure 5.11. Similarly, objects of SVGSquare are composed of one object to display a 

Figure 5.11: The Board and Square Icons
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square of the correct color (PieceRegion) and four objects representing attach points 
(AttachPoint). Note, that some of the auxiliary display objects, for instance objects rep-
resenting attach zones, are not shown explicitly in the final diagram (they will further be 
referred to as hidden objects) but such objects nevertheless exist.

Some display classes have attributes to cope with the case that objects of the same 
class can have a totally different graphical appearance. One example is the attribute color
in class SVGSquare whose objects display both black and white squares. The following 
constraint ensures that a model element of type Square is always represented by a display 
object of the same color.
context SquareDM inv: self.me.color = self.vo.color

Note that this rule is given for sake of understandability, but breaks the abstract / con-
crete syntax disconnection rule. Indeed, SVGSquare::color is of kind enumeration 
Color that may be found in the abstract syntax, thus requiring a dependency from concrete 
to abstract syntax. Even if acceptable, this is a bad display class design as it is no longer 
possible to reuse the display classes for another abstract syntax just rewriting display man-
ager classes. A better approach would be to redefine a color enumeration in the display 
classes.

Other constraints which are attached to display manager classes aim to express rules 
in the concrete syntax that restrict the relationships between visual objects, e.g. that the 
visualization of a square is placed at the expected position in respect of the position chosen 
to place the board. For instance, the rule would imply that a square with x=2, y=4 is placed 
directly right from the square with x=1, y=4. Provided that squares cannot be shown rotated, 
this is equivalent to saying that the west attach point of the first square overlaps with the 
east attach point of the second. Our goal to express such constraints formally motivates the 
two following things.

Again, main display classes all implement the GraphicalObject interface. More-
over, display manager are aware of the internal structure of display classes. This allows the 
formalization of any kind of spatial restrictions, e.g. the above mentioned case of placing 
the two squares:
context s1,s2:SquareDM inv: 
   s1.me.x=2 and s1.me.y=4 and 
   s2.me.x=1 and s2.me.y=4  
implies s1.west.overlaps(s2.east) 

A more complete solution of the square arrangement problem is achieved by the fol-
lowing invariant: 
context s1,s2:SquareDM inv: 
(s1.me.x+1=s2.me.x and s1.me.y= s2.me.y 

implies s1.east.overlaps(s2.west)) and  
(s1.me.y+1 = s2.me.y and s1.me.x = s2.me.x 

implies s1.south.overlaps(s2.north)) and  
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(s1.me.x=1 
implies sl.west.overlaps(s1.me.board.dm.vo.boardAttach) and 

(s1.me.x=8 
implies sl.east.overlaps(s1.me.board.dm.vo.boardAttach) and 

(s1.me.y=1 
implies sl.south.overlaps(s1.me.board.dm.vo.boardAttach) and 

(s1.me.y=8 
implies sl.north.overlaps(s1.me.board.dm.vo.boardAttach)

Pieces may be represented in various ways depending on their kind. As these repre-
sentations completely vary, and are not variant of each other as it is the case for square 
whose only color vary, we preferred to introduce an abstract display class SVGPiece, 
which is realized by different concrete display classes SVGRook, SVGKnight, SVG-
Bishop, etc. However, any kind of piece may also vary in its color. This time, considering 
a specific kind of piece, it remains a small variation following the example of the square’s 
color. Thus, we introduce a color attribute in the abstract display manager SVGPiece, 
that each inheriting concrete classes will have the responsibility to render. To specify choice 
between possible variants, we place the following constraint:
context PieceDM inv: 
(self.me.color=self.vo.color) and 
(self.me.kind=PieceKind::pawn 

implies self.do.oclIsKindOf(SVGPiece)) and 
(self.me.kind=PieceKind::rook 

implies self.do.oclIsKindOf(SVGRook)) and 
(self.me.kind=PieceKind::knight 

implies self.do.oclIsKindOf(SVGKnight)) and 
(self.me.kind=PieceKind::bishop 

implies self.do.oclIsKindOf(SVGBishop)) and 
(self.me.kind=PieceKind::queen 

implies self.do.oclIsKindOf(SVGQueen)) and 
(self.me.kind=PieceKind::king 

implies self.do.oclIsKindOf(SVGKing))

5.4 Display Classes Implementation

We have seen a way to specify what is a correct graphical sentence. Nevertheless, we let 
GraphicalObject implementation, actual display classes rendering, and possible user 
interactions (i.e. user "interactors", that is tools handling user interactions) unspecified. 
Moreover, we did not state how concrete representation is synchronized with the display 
objects. We discarded those considerations so far as they are not directly part of concrete 
syntax. However, they need to be solved when it comes to concrete modeling. We present 
here an approach based on SVG templates to be used in association with predefined compo-
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nents using the DOM API (further referred to as DOM components) to perform all these 
tasks. A prototype tool was developed to validate the concepts. Note that the proposed 
approach is one among many possible.

5.4.1 A Template-Based Approach

Scalable Vector Graphics (SVG - see section 2.2.3 on page 29) is an open XML standard for 
2D vector graphics. It was engineered by specialists of the domain and has that flexibility to 
be interactively changed using the DOM architecture as any XML specification.

We propose here a technique based on SVG to define graphical appearance of con-
crete syntax. Principle of the approach is the following: a diagram is an SVG document in 
which a language engineer may freely add new predefined SVG elements as described in 
SVG templates, and interact with the created elements as allowed by declared DOM compo-
nents. Each one of these SVG templates corresponds to a main display class, i.e. a concrete 
display class that has a connection to a display manager class. In the example of figure 5.8, 
main display classes are SVGTransition, SVGSimpleState, SVGCompositeState, 
SVGInitial, and SVGChoice. Composed display classes must be described in the tem-
plate of their topmost container: in the example, a section of the SVG template for SVG-
SimpleState must describe the name part.

When the system engineer decides to add a new element to his/her model, say a Sim-
pleState, a copy of the SVG template for SVGSimpleState is integrated into the SVG 
document that represents the diagram. In the meantime, an SVGSimpleState and an 
SVGText display objects are created, and a relation between the template copy (i.e. the 
template instance) and the SVGSimpleState display object is maintained. According to 
specification described in section 5.3, the creation of an SVGSimpleState display object 
should trigger the creation of a SimpleStateDM display manager. Finally an associated 
SimpleState object, together with a synchronization between the value of the name slot 
of the State object and the value of the text slot of the SVGText display object should 
be created. We suppose that this last part of the integration of a new model element is real-
ized by a constraint solver at model level, or any model transformation obeying constraints 
as described in section 5.3. Relation between the template copy (an XML tree as placed in 
the SVG scene) and the display object (in a model repository) is in charge of synchronizing 
the value of the text slot of the display object and the actual text represented in the scene 
and that should be described in the SVG template.

Figure 5.12 exemplifies this template-based approach. Main display classes, which 
are emboldened on the figure, have a corresponding SVG template, and each one of con-
tained display classes has an SVG counterpart in the template according to role name. As an 
example, a start section appears in the SVG template for SVGTransition, which corre-
sponds to the contained start SVGArrowEnd display object. Note that the SVG section 
for the end display object is different, even though it corresponds to the same SVGArro-
102



Graphical Concrete Syntax
wEnd display class: correspondence is given according to role name rather than class. When 
the system engineer decides to place a new transition in the diagram (i.e. the SVG scene), 
any $$ occurrence in the SVG template is replaced by an identifier specific to the template 
instance so that the associated main display object may be found for synchronization pur-
pose. For instance, when value of the event text changes, value of the text slot in the cor-
rect SVGText display object must be changed accordingly, including when many SVGText
or SVGTransition display objects exist together.

We will see in next sections that template instances are also subject to variations 
according to user interactions. An example is simple states: if name changes, the containing 
rectangle needs to grow accordingly. This means that template instance have some dynamic 
behavior, and may need to be reorganized because of various possible reasons. Templates 
thus may need to specify a layout mechanism to state how an automatic reorganization may 
happen. Constraints have long proven to be a comprehensive mean to specify such layout 
mechanism [Sut63, BMSX97], and we decided to rely on CSVG [MMM04] that is special-
ized in constraining SVG documents. In the simple state template, the growing-name prob-
lem is solved as shown in figure 5.13

First, a variable named w_$$ tracks an arithmetic expression in which the computed 
width of the name_$$ text plays a role. A first constraint, placed in the rectangle, forces 

SVGSimpleState

SVGText

SVGPseudo
State

...

Display Classes

«contains»
1

Iconic Part

SVGTransition

SVGArrowEnd

SVGArrowEnd

«connects»
1

start

end
1

0..1
event

name

SVGInitial

SVGChoice

SVGText
text:String

«connects»

«nearby»

Figure 5.12: SVG Templates for Statecharts

<svg> 
<rect name="start_$$" visibility="hidden" …/> 
<polygon name="end_$$" …/> 
<text name="event_$$" …/> 
… 

</svg>

<svg …> 
<g …> 
<rect …/> 
<text name="name_$$" …/> 
… 

</g> 
</svg>

<svg …> 
… 

</svg>

<svg …> 
… 

</svg>
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that rectangle to be as wide as the value of the w_$$ variable. A second constraint, placed in 
the name_$$ text, constraints the text to be placed at an x position computed so that the 
text will remain in the center of the rectangle. CSVG tool automatically places listeners in 
the SVG document. If contents of the name_$$ text changes, computed value of the w_$$
variable is updated, which triggers a new computation for the rectangle’s width and for the 
text’s position. Note that postfixing any name with $$ guaranties that no confusion between 
various simple state template instances will happen.

5.4.2 Predefined DOM Components to Specify User Interactions

SVG is an XML dialect, and an SVG document is an XML tree. DOM is an API that pro-
gramming languages such as Java use to read and alter XML trees. Thus, a program making 
use of the DOM API may alter an SVG document. We will further call such kind of pro-
gram, DOM components. We chose an architecture in which user interactions (e.g. mouse 
moved, mouse clicked, or key hit) trigger execution of some DOM components, which may 
alter the SVG document that represents the diagram scene. Those DOM components may 
behave differently depending on the context (e.g. what are the selected elements, what are 
the elements under the mouse). It is important for the SVG graphical renderer to adapt 
graphical information according to SVG document as soon as the XML tree is changed. 
This is the case in our prototype implementation, for which we relied on the Apache Batik 
toolset [Apa].

5.4.2.1 Architecture

We have used DoPIdom architecture as an inspiration for DOM components organiza-
tion [Bea06]. We show, in figure 5.14, a conceptual view of the architecture we applied 

<svg …> 
<g …> 
<c:variable name="w_$$" 

value="c:max(c:width(c:bbox(id('name_$$'))) + 20, 150)" /> 
<rect …> 
<c:constraint attributeName="width" value="$w_$$"/> 

</rect> 
<text id="name_$$" …>Simple State Name 
<c:constraint attributeName="x" value="$w_$$ div 2 - 75"/> 

</text> 
</g> 
</svg>

Figure 5.13: SimpleState SVG Template:
CSVG Constraint to Handle Text Growth
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regarding DOM components. The diagram is an SVGScene, whose document is an XML 
tree (a hierarchy of XMLNodes that may own some XMLAttributes). The SVG scene, has 
knowledge of the rendering of each XML node (thanks to Batik), and maintains a list of 
selected XML elements. Beyond plain SVG, we make it possible for an XML node to 
declare a set of Interfaces. An interface is a Behavior that can react to a certain kind of 
event (EventKind), according to a context (e.g. selected component) and persistent 
Parameters. A parameter may be an integer value, a boolean value, a character string 
value, a reference to an XML node, a collection of values and references, etc. An event may 
be a Query (e.g. to ask for the position of an SVG node - Location) or an Action (e.g. to 
set the position an SVG node - Position). Beside interfaces, Interactions handle user 
interactions. Examples for user interactions are mouse movement, keystroke, click on the 
mouse, or action on the mouse wheel. Note that in order to react to a stimulus (event or user 
interaction), a behavior is likely to send new events to interfaces of XML nodes. In order to 
be valid, an interface may requires its holding XML node to declare other specific inter-
faces, e.g. a component with selectable interface should also declare the highlightable inter-
face.

We developed various DOM components (i.e. interfaces and interactors) following 
the above-described architecture. For instance, one of these interfaces is Translatable, 
which allows the system engineer to move an SVG element. The interface is declared as 
able to react to a Translate event kind. A Translator interaction is also defined to 
react to mouse drag. When the system engineer drags the mouse on the SVG scene, the 
Translator interactor will react by first asking the SVGScene to find an interface able to 
handle a Translate event, and held by an XML node at the position of the start of the 
drag (by mean of the getInterfaceAtForEvent method). If such a Translatable
interface is found, a Translate event is instantiated and informed of the translation to be 
done (by mean of its dx and dy slots) and sent to the Translatable interface. To do so 
the Translatable interface first needs to get the position of element to translate (i.e. the 
position of its holder): it will check that its holding XML node owns an interface able to 
answer the Location event, and get the result that this interface returns. Finally, the 
Translatable interface will merely change the XML tree of its holder by creating or 
updating its "transform" XMLAttribute, according to the current position of the element 
and the request mediated by the Translate event. Indeed, in SVG, the "transform" 
attribute permits to change the graphical position and angle of representation.

To declare an interface, the holding XML node needs to add name of the DOM inter-
face as a "component" attribute value. The same remark holds for parameters for at least 
two reasons. A first reason is that an interface may require some parameters to work, 
including when the template is instantiated. For instance, a DirectionAdjustable
interface needs to know what is the vector (as referenced by an SVG path) defining its 
direction. A second reason for the parameters to appear in the SVG document is that a save/
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load interaction should not interfere in behavior: context should be saved somewhere; we 
placed that context in the SVG document itself. Examples will follow in next section.

We implemented an observer pattern that makes it possible to be notified of executed 
actions. We also built an active query listener mechanism that periodically executes a query 
and notifies an observer in case the query returns a different result. This observer mecha-
nism helped in designing the framework, and even behaviors. For instance, this mechanism 
helped in making containable nodes follow movements of their container node.

5.4.2.2 Predefined DOM Interfaces

As the implementation of the prototype evolved and as our experience became broader, we 
identified the following DOM interfaces necessary to define a graphical language.
Interfaces dedicated to position (only SVGLocatable DOM nodes may be handled):

Figure 5.14: Conceptual Architecture of DOM Interfaces

SVGScene

getElementsAt(x, y) : XMLElement [*] {ordered}
getElementsUnder(XMLNode) : XMLElement [*] {ordered}
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• OriginGettable: finds the absolute position of an XML node in the scene (i.e. the 
absolute position of the point with relative coordinates (0,0)).

• Locatable: finds the coordinates of the holding node in the scene in terms of posi-
tion, width and height.

• BorderFindable: finds a list of points in the scene drawing the outline of the hold-
ing XML node.

Interfaces dedicated to movement (only SVGTransformable DOM nodes may be han-
dled):

• Positionable: places the XML node in a given absolute position
• Translatable: moves the XML node according to given a vector.
• Stickable: relates by mean of a stickers parameter to a collection of XML 

nodes that must be Translatable; those stickers nodes are moved at same time 
the holding XML node moves. Stickable is an example where the observer pattern 
described above was helpful regarding implementation.

• DirectionAdjustable: changes the orientation of the holding XML node accord-
ing to a vector (at definition time, basic direction is defined as from left to right).

• BorderSlidable: makes the holding XML node able to move only following the 
outline of a component that is registered in an attachedComponent parameter. 
Note that if the attachedComponent XML node moves, the holder XML node 
must move accordingly.

• Resizeable: emphasizes the holding XML node of a given factor.

Interfaces dedicated to text editing (only Text XML nodes are handled):

• CharacterHitable: places a caret at a given index of the Text XML node; the 
holder XML node must declare the OriginGettable interface.

• CharacterInstertable: insert a given character at a given position of Text
XML node; if the contents of the Text XML node is a CSVG constraint on an 
attribute, changes the attribute instead.

• CharacterDeletable: removes a given character either at the left or at the right of 
given position of the child Text XML node; if the contents of the Text XML node is 
a CSVG constraint on an attribute, changes the attribute instead.

Interfaces dedicated to scene management:

• Highlightable: makes the holding XML node more notable by emphasizing its 
outline.

• Selectable: places the holding XML node as part of the selection of the scene; the 
holding XML node must declare the Highlightable interface.

• Orderable: changes the order of the XML nodes in the scene by placing the holder 
XML node backward, forward, to front or to back.
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Interfaces dedicated to connection-based languages:

• Link: XML nodes declaring this interface will just be holder for connections and 
should not be rendered in the scene. Typically, they are empty groups. Link inter-
faces just make the connection between XML nodes participating in the connection 
by declaring what is the connection XML node (by mean of the curvedLine param-
eter) and what are the elements represented at the ends of the connection (by mean of 
the start and end parameters). It may also declare handlers to change the route of 
the connection, but this should not be part of language designers’ concerns.

• CurvedLine: such XML node may be placed as a connection for a link. They over-
load an eventual Selectable behavior by creating line handler in order to change 
its route (i.e. its intermediate points). Only SVG paths are supported for the moment. 
Original link is known by mean of the parentLink parameter.

• Arrow: such XML node may be placed at the start or the end of a link. It has same 
behavior as DirectionAdjustable and BorderSlidable interfaces with those 
differences that a move will also move the corresponding connection end. position
parameter states whether the XML node is at the beginning or at the end of the con-
nection. Interface changes the Translatable and Positionable behavior (by 
mean of an observer) by making the holding XML node part of the stickers of an 
eventual BorderSlidable XML node placed under.

Interfaces dedicated to containment:

• Container: such XML node may be able to contain XML nodes declaring the Con-
tainable interface. Contained elements are placed in the contents variable. Inter-
face changes the Translatable and Positionable behavior (by mean of an 
observer) by making the contained nodes follow the same movement. This notion is 
independent from the notion of SVG group.

• Contained: such XML node may be part of the contents of an XML node declaring 
the Container interface. Container is placed in a container parameter. Interface 
changes the Translatable and Positionable behavior (by mean of an observer) 
by attaching or detaching the XML node from its container according to its target 
position.

We also defined a set of standard interactions to animate those interfaces (e.g. drag and drop 
raises a Translate event on the selection, or click on a selectable element triggers the 
Selectable behavior). Other interactions are able to exit (in case the escape key is 
pressed), or to save the document by flushing both the XML document and the model into 
an SVG and an XMI file, respectively.

An example, shown in figure 5.15, is the template definition for SimpleState. In 
this code snippet, the first element is an SVG group that declares the Contained and 
Translatable interfaces. The group contains a rectangle that is responsible for being the 
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outline of the state in that it declares the BorderFindable interface. The group also con-
tains a text that is the placeholder for the name of the state. That is why this text must be 
editable and declares CharacterHitable (thus the OriginGettable), Character-
Insertable and CharacterDeletable interfaces.

Interfaces often need to be used together, following the example above of an editable 
text that needs to declare specific interfaces. The DoPIdom framework offers the Compo-
nent class that is meant to group interfaces together.

The example for the template for transitions is given in figure 5.16. The template 
starts with an empty group which is the holder for the Link interface. The link group is 
named $$, which will be replaced by a unique identifier at template instantiation time. It 
declares parameters in the parameters XML attribute following the following pattern:
parameters ::= parameter (’,’ parameter)*

<svg …> 
  <g dpi:component="Translatable, Contained,…" …> 
    <rect id="border_$$" dpi:component="OriginGettable, 
BorderFindable, Stickable, …"…/> 
    <text name="name" dpi:component="CharacterHitable, 
CharacterInstertable, CharacterDeletable, …" …/> 
    … 
  </g> 
</svg>

Figure 5.15: SimpleState SVG Template: Declaring DOM Components

<svg …> 
  <g id="$$" dpi:component="Link" 

parameters=" Link(endArrow, end_$$), 
Link(curvedLine, path_$$), …" …/> 

  <path id="path_$$" dpi:component="CurvedLine,…" 
parameters="CurvedLine(parentLink, $$)" …/> 

  <polygon id="end_$$" 
dpi:component="Translatable, 

BorderSlidable, 
DirectionAdjustable, 
Arrow, …" 

parameters="Arrow(attachedLink, $$), …" …/> 
  … 
</svg>

Figure 5.16: Transition SVG Template: Declaring DOM Components
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parameter ::=<ParameterInterface> ’(’ <ParameterName> ’,’ 
parameterValue ’)’

parameterValue ::= parameterSimpleValue | listValue

parameterSimpleValue ::= <XMLNodeId> | listValue | <IntegerValue>

listValue ::= parameterValue (’,’ parameterValue)*

A path with a path_$$ identifier and a polygon with an end_$$ identifier also appear in 
the template. They also declare parameters according to their respective rules. Note that the 
end_$$ arrow end is not connected to any BorderSlidable capable XML node, mean-
ing that the arrow end may be moved freely. For example, if the arrow end is moved on top 
of a simple state template instance, the border_simplestate1 XML node (in case $$
was replaced by simplestate1) will be automatically updated to integrate the arrow end 
in its stickers parameter.

In order for a display object to be a valid GraphicalObject (as introduced in 
section 5.3.4), template for a main display class must declare the following interfaces in one 
of its node or sub-node:

• Locatable in order to implement the nearby method,
• BorderFindable in order to implement the connects method,
• BorderSlidable in order to implement the connects method,
• Container in order to implement the contains method,
• and Containable in order to implement the contains method.

Moreover, constraint engine or model transformation responsible for abstract/concrete syn-
taxes consistency may need to force one of those methods to return true or false. To do so, 
we introduce forcing algorithms that require (1) the Positionable interface in addition 
to the previous ones in order to force the nearby method, and (2) the Resizable inter-
face to force the contains method. In order to force the connects method, it is enough 
to declare interfaces BorderSlidable, as the interface integrates a routine to set attached 
components.

5.4.3 Relation With the Model

Although a language engineer may freely choose his/her own concrete syntax graph, syn-
chronization between concrete syntax graph and representation is not completely automat-
able: mapping needs to be explicit. We propose here a mechanism to update concrete syntax 
graph (in model repository) according to changes in the SVG document (as an XML tree).

As explained in previous section, changes that may occur in the SVG scene are made 
possible by declaring interfaces chosen in a predefined library. The interfaces state what are 
the behavioral capabilities of their holding XML node, e.g. an SVG rectangle that is able to 
move because the node declares the Translatable interface. While some changes in the 
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scene don’t alter the concrete syntax graph (e.g. changing the route of a path representing a 
transition), some others need to be reflected (e.g. moving a Containable SVG rectangle 
that represents a SimpleState into a Container SVG rectangle that represents the con-
tents area of a CompositeState).

To solve problem of specifying this representation-to-concrete syntax graph data 
propagation, we propose an event-based approach in which reactions to events will impact 
the concrete syntax graph as a model. Such reactions may be written in a specialized lan-
guage as KerMeta, Xion, EMF or JMI Java. To avoid confusion between the language under 
specification and the concrete syntax manipulation language, we will further refer to this 
latter language as the reaction language.

To define a reaction, different information need to be provided. First, reaction needs 
to be given an access to the model repository in which concrete syntax graph resides. We 
detail in section 5.4.3.1 how a repository can be handled. A reaction also needs to know 
what is the display object represented by the template instance. For instance, if a name is 
changed in a state representation, the corresponding reaction must be sure to alter the name 
of the correct state. To do so, we introduce in section 5.4.3.2 a mechanism of high-level 
variables (referring to elements of the concrete syntax) that can be maintained in template 
instances. We identify in section 5.4.3.3 what are the possible events that may define a reac-
tion according to the DOM components that are defined in section 5.4.2.2. The representa-
tion also needs to be updated when the concrete syntax graph is changed, be it by as a side 
effect of a reaction or by another mean. We detail a mechanism to listen to concrete syntax 
graph changes in section 5.4.3.4.

5.4.3.1 Access to Repository

To keep our solution as generic as possible, we introduced notion of interpreters: to a given 
reaction language (name), we associate an interpreter. In the current implementation, we 
have only a Java interpreter (Koala [Hil02]), but one may imagine many others (e.g. Ker-
Meta, Python, MTL). For a given language, the language engineer may associate three 
scripts per interpreter that will be executed at initialization time, when document is saved, 
and when document is loaded. Example for the usage of such script would be instantiating 
the model repository and creating base objects for the initialization script, saving an XMI 
file in save script, and loading an XMI file in load script. Variables initialized in the initial-
ization script will be accessible to any further script (load, save, and reactions to events). In 
the example of JMI model repository, such further accessible variable would be the root 
RefPackage from which any model element may be created or found. Those initialization, 
load and save scripts are intended to manage access to model repository in a generic fash-
ion: language engineer may freely decide which kind of model repository to use, what is the 
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exchange format, etc. Example for an initialization script in Java/Koala for the statechart 
language is given in figure 5.17.

Script first loads in an MDR repository the statechart metamodel that should be an XMI file 
sc.xml to be found in the SVG templates folder (as given by the predefined language-
Dir variable). As it is a new model, a StateMachine instance must be created and a ref-
erence to a top CompositeState should be realized. Variables metamodelFile, 
model, sc, and top will be accessible in any further script of the same interpreter.

5.4.3.2 Maintaining High-Level Variables

Once an SVG template is instantiated, one or more display objects are supposed to be cre-
ated in the concrete syntax model. To be able to update the display objects’ slots, template 
instances need to reference them. Do do so, we propose to declare variables in the SVG 
template, that are filled at template instantiation by a dedicated initialization script, as a 
reaction to template instantiation. The script is of the same nature as initialization, load and 
save scripts described above with that difference they are declared within SVG templates.

metamodelFile = new java.io.File(languageDir,"sc.xml") 
.getAbsolutePath(); 

model = (sc.ScPackage)model.ModelFactory.getInstance() 
.getModel("MDR", new Object [] {metamodelFile}); 

sc = model.getStateMachine().createStateMachine(); 
top = model.getCompositeState().createCompositeState(); 
sc.setTop(top);

Figure 5.17: JMI Initialization Script

<svg onCreation="{Java| 
s = model.getSimpleState().createSimpleState(); 
s.setName(&quot;newState&quot;); 
top.getSubvertex().add(s);}" …> 

<g id="$$" var_self="$s" …> 
<rect id="border_$$" var_self="$s"  …/> 
… 
<text id="name_$$" var_self="$s" …>newState</text> 

</g> 
</svg>

Figure 5.18: SimpleState SVG Template: Creation Reaction
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We provide in figure 5.18 an example for SimpleState SVG template. At instantia-
tion time, expression found in the template is executed with the declared interpreter. In the 
example above, we use the Java (Koala) interpreter, which means that we have access to the 
variables declared in the Java initialization script (i.e. metamodelFile, model, sc, and 
top). As we make use of a JMI repository, code makes use of the JMI API. s is a new vari-
able that receives a new SimpleState instance with name "newState", and contained 
by the top composite state. Note that we should have created here an SVGSimpleState
and an SVGText rather than directly a SimpleState, but our prototype tool does not inte-
grate a constraint solver. That is why we work here directly at abstract syntax level, which is 
bad design since concrete syntax defined here may not be seamlessly applied to another 
metamodel.

Any element of the template may then declare variables, following the examples of 
the $$ group, the border_$$ rectangle and the name_$$ text. Variables are XML 
attributes of the form:
variable ::= var_<VariableName> ’=’ ’"’ variableValue ’"’

variableValue ::= boolean|double|string|integer|object|collection

boolean ::= ’Boolean’ ’(’ (’true’|’false’) ’)’

double ::= ’Double’ ’(’ <DoubleValue> ’)’

string ::= ’String’ ’(’ <StringValue> ’)’

integer ::= ’Integer’ ’(’ <IntegerValue> ’)’

object ::= ’Object’ ’(’ <ObjectID> ’)’

collection ::= (’Set’|’Bag’|’Serquence’|’OrderedSet’) 
’(’ variableValue (’,’ variableValue)* ’)’

Boolean, double, and integer values have the same form as those of the Java language. 
Object identifier is a unique identifier referencing an object in the model. Collections may 
be nested. However, in the example above, variables var_self do not follow the above 
format. Indeed, their value is $s. This value is replaced in the template instance by the 
value found in the exiting context of the creation script. In our example, exiting context 
actually contains an s variable referencing the newly created simple state: any $s occur-
rence will be replaced by Object(123456) (assuming that the unique identifier of the 
new simple state is 123456).

5.4.3.3 Reactions to Events

A change in the model is triggered by a change in the diagram. Possible changes that may 
occur in the diagram are all described by mean of DOM interfaces. We propose to enhance 
interfaces with the possibility to define reactions within the SVG templates that are trig-
gered each time a behavior is performed. Such reaction may be described using an action 
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language following the same approach as before, when it came to defining initialization, 
load and save scripts, and when we stated what is the action to take at template instantiation 
time. We call such scripts reaction scripts.

Major difference with initialization, save and load scripts described above is that not 
all graphical elements define the same reactions following the example of the creation 
script. Possible reactions depend on interfaces that an XML node declares. Thus, interfaces 
may trigger a certain number of reactions, and a reaction is related to a given interface. Note 
that only action interfaces may trigger reactions. In the example of the statechart language, 
the border part of the SimpleState template declares the Stickable interface. When 
a BorderSlidable XML node (e.g. an end of a transition template instance) actually 
sticks to that border, an onStick reaction as found in an onStick XML attribute of the 
border is performed.

For the reaction to be able to perform its task properly, a context needs to be passed. 
In the previous example, when a BorderSlidable XML node sticks to the border of a 
SimpleState, the action should update the corresponding StateVertex::incoming
reference (according to metamodel of figure 4.8 on page 78). To do so, in addition to an 
access to the repository, the triggered reaction needs to know what are the implied simple 
state, transition, and whether the stuck end is actually the start or the end of the transition 
symbol (for the action not to update the StateVertex::outgoing reference instead). 
This problem is solved by constructing a specific context depending on the triggered event, 
in addition to context constructed by the initialization script. First, each high-level variable 
maintained by the XML node that declares the interface is added, and may be altered by the 
scripts. Such alteration requires to update the XML tree once the script is executed. More-
over, in the example of the Stickable::onStick event, the context depends not only on 
the stickable object (the border), but also on the sticking object, which is an XML node. 
As an XML node may not be handled in a straightforward way by an action language, we 
add to the context each high-level variable (as described in previous section) that is main-
tained by this latter node. Those variables are presented in the context either in an encapsu-
lated or a prefixed fashion in order to avoid any confusion with high-level variables of the 
holding node. In our example where the end of a transition sticks to the border of a simple 
state, the triggered reaction defined by the border of the simple state will be executed in a 
context that contains stuckComponent_self : Transition and 
stuckComponent_isSource : Boolean variables because the end of a transition 
maintains self : Transiton and isSource : Boolean high-level variables. This 
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allows to improve the SimpleState template for the onStick event using the Java/
Koala - JMI language as shown in figure 5.19.

We identified the following possible reactions for action interfaces defined in previ-
ous section; specific variables added to context of triggered actions are also given:

• Positionable and Translatable: onPosition with posX and posY : Dou-
ble variables for the new coordinates of the XML node.

• Stickable: onStick in case of new stick and onUnstick in case of stick 
removal, with a stuckComponent_/unStuckComponent_ prefixed set of vari-
ables for high-level variables maintained by the (un)stuck XML node.

• DirectionAdjustable: onRotate with an alpha : Double variable that indi-
cates the new angle in radians.

• Resizeable: onResize with sizeX and sizeY : Double variables for the new 
size of the element.

• CharacterInstertable and CharacterDeletable: onChange with a con-
tent : String variable stating the new value of the text node.

• Container: onContained with a containedComponents : 
Set(Set(Sequence(Object))) variable that contains, for each contained XML 
node, each maintained high-level variable as a sequence containing name in first posi-
tion and value in second position.

• Contained: onContained with a containerComponent_ prefixed set of vari-
ables for high-level variables maintained by the new container.

<svg …> 
<g …> 
<rect id="border_$$" dpi:component="Stickable, …" 

var_self="$s" onStick="{Java| 
if ((stuckComponent_isSource).booleanValue()){ 

self.getOutgoing().add(stuckComponent_self); 
} else { 

self.getIncoming().add(stuckComponent_self);}; 
} 

}"…/> 
… 
</g> 
</svg>

Figure 5.19: SimpleState SVG Template: onStick Reaction
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5.4.3.4 Reacting to Model Changes

Pulling up information about changes from representation to model is not enough to repre-
sent a model: the model may also change either externally (e.g. a refactoring model trans-
formation) or as a side effect (e.g. in case an information of the abstract syntax is 
represented more that once - a change in one representation should be reflected in the other 
representations). We introduce here a technique inspired from CSVG to push down model 
changes into representation.

If constraints of the specification part are enough to state general diagram constraints 
(see section 5.3.3), template instances need to track slot value of their display object. We 
propose to copy those values in the SVG document, and to place listeners on the model so 
that those values are updated automatically in the SVG document. CSVG constraints may 
then listen to those values and force the template instance to display them in an appropriate 
way.

To declare such copy-and-listen mechanism, we introduce a new update XML node 
following the example of the CSVG constraint XML node: such tag is a child of the 
XML node owning the XML attribute in which value from the model will be stored. The 
attributeName XML attribute states in which attribute to store the value. Two more 
XML attributes of the update XML node state what is the display object to observe 
(var_source - a high-level variable that is probably an object) and what is the slot to 
observe (slot). Moreover, when the XML attribute storing the value is changed, the model 
is updated accordingly.

We finalize in figure 5.20 the definition for the simple state template. The Text XML 
node does not contain text to display. Instead, a tval CSVG constraint states that the text to 
display should be found in the attribute value of the Text XML node by mean of an 
XPath expression. An updater XML node is also defined to maintain the value attribute 
to the actual value of the name slot of the model element s, as created at template instantia-
tion.

Once the template is instantiated, the onCreation reaction is triggered. Among 
other things, its creates a new SimpleState model element in the repository and stores it 
into the s variable. The name slot of s is also set to newState. The updater then comes 
into the play by reading the name slot of s, and places the result in the value attribute of 
its owning text node. The tval CSVG constraint, which is listening on that attribute, 
makes the text display the attribute’s value. Finally, at then end of template instance, the 
text node displays newState even though not directly written in plain SVG.

As text is an XML node declaring the CharacterInstertable interface, a user 
interaction may change the value of the displayed text. As the contents of the text is a tval
constraint following the value attribute, the new text will be placed in that attribute. As the 
value has changed, the name slot of the $s model element is changed accordingly, thus 
avoiding to write an onChange action event.
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Note that this technique is only meant to maintain an attribute value in the SVG docu-
ment and a slot value in the model synchronized. More complex relations still require a con-
straint solver at model level and event actions at XML level.

Automatic synchronization between models and a data structure requires to have a 
specialized knowledge of the model repository technology. So far, our prototype implemen-
tation only supports JMI-based repositories, but other technologies may be easily inte-
grated. Adopted technology is selected according to the XML namespace of the update
tag thus making possible to mix, bridge and move technologies for a same document.

5.4.4 Prototype Implementation Overview

In this section we take a rapid tour of the prototype implementation for the realization step 
of graphical concrete syntax specifications. If we already had the opportunity to draw its 
main features all along section 5.4, we describe here how to use of the prototype.

The prototype is an evolution of the DopiDOM framework, and is based on a version 
of Batik adapted to handle CSVG constraints. We improved DopiDOM by refactoring the 
interactors system (by applying a composite pattern), and by implementing an event system. 
The event system listens to actions, or actively executes given queries firing an event each 
time one of the queries returns a result that is different from last execution.

<svg onCreation="{Java| 
s = model.getSimpleState().createSimpleState(); 
s.setName(&quot;newState&quot;);…"…> 

  <g …> 
… 
<text id="name_$$" var_self="$s" 

value="" 
onChange="{Java| self.setName(content);}" 
dpi:component="CharacterHitable, CharacterInstertable, 

 CharacterDeletable, …"…> 
<c:tval value="../@value" /> 
<m:updater attributeName="value" 

var_source="$s" 
slot="name" /> 

… 
</text> 

  </g> 
</svg>

Figure 5.20: SimpleState SVG Template: Updater
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A language specification is read from a directory that contains at least the SVG tem-
plates: the tool finds the templates and creates a toolbar that contains buttons for instantiat-
ing each one of the templates. The names of the files (<name>.svg) are used in the toolbar 
to identify the templates. To instantiate a template, the system engineer clicks on the button 
of the toolbar corresponding to the template to instantiate, and then clicks on the scene at 
the place the new template instance should appear. The tool then integrates the new copy of 
the template in the scene. If the instanciated declares either a Positionable or a Trans-
latable interface, the new template instance is moved to the indicated position. A default 
background for the scene is available with a default interactor specified. However, one can 
provide her/his own background by an empty.svg file to be found in the language specifi-
cation directory.

The language specification directory can also contain initialization, load or save 
scripts. The scripts should be placed in the directory with names init.<Language>, 
load.<Language>, and save.<Language>, respectively. Language corresponds to 
the name of the language interpreter to be used. Current implementation manages only the 
Koala dynamic Java interpreter, whose name is either Java or Koala. The scripts are 
intended to contain instructions about model repository handling, for instance JMI reposito-
ries. To help in writing the scripts, the prototype implementation integrates an helper func-
tion to setup an MDR repository by providing as argument the location of an XMI file 
containing a MOF metamodel. Other helper functions manage saving and loading of models 
from/into an MDR repository. The helper functions are declared in the ModelFactory
class of the tool, as shown by figure 5.17. In addition, the tool loads any java library (jar
file) found in the directory. This notably allows to place a jar file containing all the JMI 
interfaces of the metamodel in the language specification directory to help in manipulating 
model elements, in inititialization, load and save scripts, and in reactions to events. Without 
this, the JMI expression of figure 5.18 s = model.getSimpleState().createSim-
pleState() would not be possible, since the getSimpleState and createSim-
pleState methods are declared in the JMI interfaces that are specific to the statechart 
metamodel. Nevertheless, one could use JMI reflective interfaces instead, by writing 
model.refClass("SimpleState").refCreateInstance(null).

We show here how the prototype behaves when the language directory contains the 
definition for the statechart language as described above. The files in the language defini-
tion directory are the following:

• empty.svg that overloads the default background file,
• init.Java that is the Java/Koala initialization script,
• load.Java and save.Java that are the Java/Koala load and save scripts,
• sc.xml that is the statechart metamodel in XMI as required by the init.Java

script,
118



Graphical Concrete Syntax
• sc-jmi.jar that is the Java library containing the JMI interfaces for the statechart 
metamodel,

• simple_state.svg, composite_state.svg, initial_state.svg, 
final_state.svg, and transition.svg that are the SVG templates.

When the tool is launched, system engineer must indicate the language definition directory. 
Tool then loads the empty.svg file and creates the buttons responsible for template instan-
tiation. The init.Java script is executed, which creates a new model from the sc.xml
metamodel, and instantiates the main state machine and its top state (according to definition 
of figure 5.17). Figure 5.21 shows the initial view, in which no SVG template was instanti-
ated yet.

In order to instantiate a new template, system engineer first clicks on the button corre-
sponding to the template s/he desires to instantiate, and then, s/he clicks on the scene at the 
location the template instance should appear. If the button corresponding to the simple state 
template was clicked, the resulting scene should look like that one of figure 5.22. Note that 

the template instance actually appears at the desired place because the template declares the 
Translatable interface. The new template instance is automatically selected because the 
template declares the Selectable interface. The onCreation reaction of the template is 
executed, which creates a new SimpleState model element in the model according to 

transitionsimple_stateinitial_statefinal_statecomposite_state

Figure 5.21: Initial View of the Prototye Implementation

Figure 5.22: Simple State Template Instantiated

newState
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figure 5.18. Moreover, because the background declares the Container interface, and 
because the simple state template declares the Contained interface, the onContained
event is triggered on the background so that the new SimpleState model element is 
placed in the top state, as must be declared in the empty.svg file (see figure 5.24 ).

At that moment, a save action would produce the SVG and the XMI files as shown in 
figure 5.23 and figure 5.24, respectively. The SVG document is a copy of empty.svg

(shown in italic in the figure) to which was inserted the simple state template instance (in 
standard font in the figure). The template instance is a copy of the template with some dif-
ferences that are underlined in the figure. First, the $$ occurrences are replaced by an iden-
tifier (5c529 in the example). Moreover, the high-level variables, which are initialized to 
$s in the template, are holding a model element reference instead (Object(a3) in the 
example). The Object(a3) references correspond to the model element that was created 
and placed in the s variable by the onCreation reaction script of the simple state tem-
plate. Finally, a translation attribute appeared, since it is the mean used by the Trans-
latable interface to move an SVG node in the scene. The generated XMI file contains the 
abstract model, i.e. a state machine (reference a1) and its top state (reference a2) as created 
at language loading by the initialization script. The top state contains a simple state (refer-

<?xml version='1.0' standalone='yes'?> 
<svg …> 
<rect id="background" dpi:component="Locatable,Container" 

fill="lightyellow" width="800"  height="600" 
parameters="Container(contents, c529)" 
onContained="{Java| ….setContainer(top);…}"/>

<g id="5c529" parameters="Containable(container, background)" 
dpi:component="Contained, Hilightable, Selectable, …" 
transform="matrix(1.0 0.0 0.0 1.0 309.0 134.0)" 
var_self="Object(a3)"> 
<rect id="border_5c529" dpi:component="BorderFindable, 

Stickable, …" var_self="Object(a3)" …/> 
… 
<text id="name_5c529" value="newState" var_self="Object(a3)" 

…><tval value="../@value"/><updater attributeName="value" 
slot="name" var_source="Object(a3)"/></text> 
</g>

<g dpi:component="Pointer"/> 
</svg>

Figure 5.23: SVG File for a Single Simple State Instance
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ence a3) that was created at template instantiation and that is referenced in the simple state 
template instance.

As a final example, we show in figure 5.25 the door state machine of figure 5.3 as can 
be drawn using the prototype implementation.

5.5 Comparison with Other Approaches

The problem of defining a graphical concrete syntax on the top of a metamodel has been 
addressed already by numerous authors.

An important remark is that UML Diagram Interchange [ADG+06] is not a mean to 
define a graphical language. UML-DI is merely a mean to exchange diagrams of a well-
agreed language as already said in section 2.1.3.4 page 24.

Some approaches, like XMF [CESW05], argue that the concrete syntax involves a 
representation language. An example of such languages is SVG, but the XMF framework 
provides its own graphical language by the mean of a representation metamodel with well 
defined semantics. Here, semantics correspond to a graphical representation rendering. 

<?xml version = '1.0' encoding = 'windows-1252' ?> 
<XMI xmi.version = '1.2' timestamp = 'Tue Jul 10 12:11:50 CEST 
2007'> 
  <XMI.header> 
    <XMI.documentation> 
      <XMI.exporter>Netbeans XMI Writer</XMI.exporter> 
      <XMI.exporterVersion>1.0</XMI.exporterVersion> 
    </XMI.documentation> 
  </XMI.header> 
  <XMI.content> 
    <sc.StateMachine xmi.id = 'a1'> 
      <sc.StateMachine.top> 
        <sc.CompositeState xmi.id = 'a2'> 
          <sc.CompositeState.subvertex> 
            <sc.SimpleState xmi.id = 'a3' name = 'newState'/> 
          </sc.CompositeState.subvertex> 
        </sc.CompositeState> 
      </sc.StateMachine.top> 
    </sc.StateMachine> 
  </XMI.content> 
</XMI>

Figure 5.24: XMI File for a Single Simple State Instance
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Thus, to define the representation of a given language whose abstract syntax is given by a 
metamodel, it is enough to define a model transformation between the metamodel of the 
language and the representation metamodel. Here, language specialist needs not only meta-
modeling skills but also needs a deep knowledge of that specific metamodel together with 
model transformation skills. We show in appendix A that manipulating metamodels in 
model transformation is not that an easy task. In contrary to XMF, we propose here to let 
language designers specify their own graphical «semantically rich» metamodel, supplying 
them with a comprehensive way to specify that graphical semantics.

Another kind of approach is taken by most meta-CASE tools, like GME [ESB04], 
DOME [Hon92], MetaCASE [Poh03], or AToM3 [dLV02]. The principle is to define a rep-
resentation template for each metaclass in the abstract syntax. A template includes a set of 
representation language constructs, as instances of the representation language metamodel, 
together with some holes that represent the variants in the depiction. Again, each one of 
these tools impose its own graphical language. When a model element has to be repre-
sented, the holes are replaced depending on the information from the model and the repre-
sentation is placed on a diagram. Unfortunately, while most of these tools provide a 
constraint language that can be used to impose restrictions on the abstract syntax, they do 
not provide a programmatic access to the concrete syntax. A notable exception is AToM3, 
which accepts to represent the variations in the icons using imperative constructs written in 
the Python language. However, also in AToM3 the definition of the concrete syntax is done 
at a much lower level as our approach which uses OCL as the main language to specify the 

Figure 5.25: The Door State Machine Described in the Tool
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concrete syntax. Again, in those approaches, reusability is a problem and representation has 
to be stated from scratch for each abstract syntax.

Graph-grammar based visual language definitions (as Triple-Graph-Grammar 
[Sch94], GenGED [Bar98]) are constructive and aim at finding a derivation for a given dia-
gram. In addition to rules, GenGED offers the possibility to attach constraints to the con-
crete syntax classes (called type graph nodes in the GenGED terminology), but the purpose 
of the constraints is merely the computation of a possible layout for a diagram. The lan-
guage definition itself is still based on graph grammar rules (see [BEdLT04] for the 
GenGED-definition of the same StateChart fragment as we used here for illustration).

In the last year, graphical concrete syntax definition has gained interest in the model-
ing community and important projects has emerged. GMF [Ecl06], TopCased [VPF+06]
and DSL tools [GSCK04] are developed by the IBM/Eclipse community, the CNRT French 
national research network and Microsoft, respectively. These metamodel-based solutions 
were developed at the same period the present work was done. The three solutions propose 
semantically rich metamodels for connection based language representation and metamod-
els to map abstract syntax, representation. A third metamodel may also provide a mean to 
define user interactions. Main advantages of these solutions over XMF is that they avoid the 
need to define complex model transformations. Nevertheless, they do not offer good reus-
ability regarding language definition and choice for model repository. Moreover, philoso-
phy is limited to connection based languages. However, they remain interesting solutions 
compared to the realization step we propose.

Thanks to the DoPIdom architecture, clearly specified user interactions are one of the 
strengths of our approach: no alteration possibility is left implicit. However, we can com-
pare our approach to that one of Tiger [EEHT05] which uses graph grammars to state any 
possible change in the diagram, e.g. a move. AToM3 [BGdL06] offers an architecture dedi-
cated to manage user interactions. Instead of using graph grammars, they propose to use 
QVT model transformations. They also use two levels of user interactions (user interactions 
vs. visual actions). However, the approach may not be seamlessly applied to XML trees.

5.6 Conclusion

We propose here a way to specify a graphical concrete syntax. The philosophy of the 
approach is to let the language designer free to choose the concrete syntax graph s/he 
believes to best fit his/her needs, using the well-known technique of metamodeling to state 
display classes. If we made use of MOF for the examples regarding metamodeling facilities, 
principle may be exported to any other object-oriented metamodeling language.

Defining concrete syntax graph is clearly not enough to define graphical concrete syn-
tax. Problems remaining to solve are the following: how the concrete syntax relates to the 
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abstract syntax, what are the well-formedness rules of the concrete syntax (e.g. spatial rela-
tionships), and what is the actual aspect of each element of the concrete syntax.

Following the example of triple graph grammar, this time adapted to metamodeling, 
an intermediate metamodel accompanied by constraints, in-between display classes and 
abstract syntax, can handle relations between abstract and concrete syntax. This approach 
requires an (incremental multi-way) constraint solver that will support abstract/concrete 
syntax synchronization at run-time, i.e. when a model is created. Nevertheless, if such kind 
of constraint solver exist [BLP04, TJ07], one may use a dedicated mapping language (e.g. 
[LHBJ05]), or define a model transformation that should satisfy the constraints to improve 
interactive efficiency. In that case, the (bidirectional and incremental) transformation should 
be verified against the defined constraints. The main advantage of defining such mediator 
in-between abstract and concrete syntax is reusability. On one hand, one may define many 
different concrete syntaxes for a same language. On the other hand, one may reuse a given 
concrete syntax and port it to another language just by rewriting association constraints.

Compared to other approaches, neither we stick to a semantically rich metamodel 
which already offers a predefined representation meaning, nor we force the language 
designer to imagine connection based languages. Indeed, we do not make any distinction 
between nodes and edges. Instead, we propose to use again constraints to define spatial rela-
tionships, and which has long proven to be a comprehensive mean to specify graphical lay-
outs of interactive systems [Sut63, BMSX97]. Only requirement is that display objects have 
knowledge of their relative spatial situations, as expressed by the GraphicalObject
interface.

To realize concretely all the promises of the concrete syntax specification, and to pro-
vide concrete appearance, we also propose a technique based on SVG, the XML based open 
standard for vector graphics. We thus benefit from the expertise of a specialized technologi-
cal space, avoiding to develop and maintain a new technology for graphics description. All 
"main" display classes, i.e. classes directly connected to a display manager class, have rep-
resentation given by an SVG file which also contains definition for "sub-"display classes. 
When a display object is created, the SVG file of the display class is copied on the diagram 
scene, which is an SVG document, with the only change of introducing an unique identifier 
to make a proper relation to the corresponding display object. In the meantime, display 
objects and display manager are instantiated in a model repository.

One may also want to make his/her language editable. As SVG is an XML dialect, an 
SVG document may be controlled by DOM technology. We exploited such aspect to man-
age user interactions. We propose a set of predefined DOM components, with the help of 
the DoPIdom framework, to declare what are the interaction possibilities for each SVG 
fragment. Examples of such SVG components are move, resize, or select components.

For synchronizing the diagram scene with the display objects (and thus the abstract 
syntax), we also introduced in the SVG fragments the possibility to integrate code to be exe-
cuted on the (display) model as indirect reactions to user interactions. Code may be given in 
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KerMeta, Xion, MTL, or JMI java code. Moreover, for the slots of display object to be 
accessible in the template, we propose to place a synchronized copy of their values in the 
template instances.

As SVG template instances are made dynamic thanks to predefined DOM compo-
nents, we propose to use the CSVG technology to define internal layout of elements. CSVG 
may also be used to adapt value of display objects’s slots to representation needs.

However, there is still place for improvement through experimentation. We should 
develop more languages and improve prototype implementation, which still lacks integra-
tion of a constraint solver. Moreover, we believe that this is only a first step in abstracting 
task of graphical model language engineering, and one may imagine yet more abstract 
ways, less flexible but more agile, as experience in rapid building of graphical modeling 
language broadens.

Both specification and realization steps of the approach we propose may be per-
formed using different technologies than we propose. For instance, specification step could 
be accomplished by (reversible and incremental) model transformations, and realization 
step by a GMF or a Topcased specification.
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Chapter 6:

Conclusion

6.1 Summary

Language Driven Engineering (LDE - e.g. [CESW05]) is an approach to software develop-
ment that composes characteristics of both Model Driven Engineering (MDE - [Ken02]) 
and related techniques, which are means to organize abstractions, and Domain Specific 
Modeling (DSM - [Poh03]), which is a mean to tailor the modeling activity to a specific 
domain. While MDE promotes the massive use of models that reside at various levels of 
abstraction, DSM advocates that each one of these models should be expressed in the most 
appropriate modeling language, depending on the domain of the model and on the abstrac-
tion level. When MDE and DSM are used together, one can fear of a proliferation of model-
ing languages, even for a single software development project: the complexity is moved 
from software engineering to language engineering.

The use of tailored languages for engineering software was already addressed in the 
1980s by CASE tools. However, CASE tools failed to be adopted because of their recurrent 
lack of quality: it is not economically viable to support comprehensive tooling for DSM lan-
guages that are limited in scope and in the size of their user community [Iiv96]. Indeed, to 
support a language, one needs to develop a development environment (textual IDE or 
graphical modeling tool), code generators, and bridges to other tools or languages (e.g. 
transformations or import/export facilities), without forgetting crosscutting concerns such 
as concurrent development or maintainability. For DSM to overcome this problem, lan-
guage engineering facilities are required.

To define a language, language engineers need to provide an abstract syntax and 
semantics. It is now widely accepted that abstract syntax of modeling languages can be pro-
vided under the form of a metamodel [AK02], while semantics is still subject to discussions 
[HR04]. Moreover, to interface abstract syntax with the stakeholders of a development 
project, language engineers need to develop one or more concrete syntaxes for the models 
to be created and read in a human-friendly fashion. A recurrent problem with concrete syn-
tax is that it is often specified using natural languages, which is a technique that is inevita-
bly subject to ambiguous interpretations [ABF+06]. If other means exist to define concrete 
syntax (e.g. graph grammars [EEKR99] or compiler compilers [ALSU06]), they are often 
inconsistent with a metamodeling approach. We proposed in this document means for 
clearly specifying concrete syntax for languages whose abstract syntax is already known by 
mean of a metamodel.
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To better introduce LDE, we presented in chapter 3 Netsilon, a web application mod-
eler we developed between 2000 and 2001. Netsilon introduces new languages for model-
ing web applications. It defines three main modeling languages. The business model
captures static data using a formalism very close to UML class diagrams, which made it 
possible to adapt (in an ad-hoc way) a UML modeling tool regarding tool support. The pre-
sentation model is a set of textual file templates. The hypertext model is a completely new 
modeling language that organizes the composition and links between the template files of 
the presentation model, according to data modeled by the business model. Netsilon is thus a 
very flexible template engine capable of representing, in textual form, data organized into a 
model. We showed that is was possible to generate SVG code [JN05] out of a model (i.e. an 
instance of business model) using SVG templates in the presentation model, with that price 
of adding data dedicated to representation. The fact that we used SVG as the generated lan-
guage made it possible to depict the model graphically. Moreover, by adding code using the 
DOM API [HHW+04], we made it possible to interact with the diagram.

Inspired by the above results, we drew our solutions to concrete syntax specification 
both for textual and graphical syntaxes.

The solution we presented in chapter 4 for textual concrete syntax specification takes 
the form of a specification language that we defined by a metamodel and semantics in natu-
ral language. The metamodel for specifying textual concrete syntaxes is inspired from both 
the concepts of Netsilon’s hypertext model, and of extended Backus-Naur form [Int01] to 
text structure specification. Typically, specifications for code generation (to represent a 
model) and text analysis (to construct a model), are separated from each other, and need to 
be consistent and maintained in parallel. This is not the case for a unique specification that 
is sufficient for automatic tools to automate text analysis (i.e. analyzing a text to produce a 
model) and synthesis (i.e. to produce text from a model). We proposed such kind of specifi-
cation language that was successfully applied to provide textual concrete syntax for differ-
ent languages. As examples, we showed specifications for a simple language of data 
structures, and for a simplified textual version of the statecharts language. The approach can 
be applied to supply our textual concrete syntax specification language with a concrete syn-
tax.

The solution we presented in chapter 5 to graphical concrete syntax specification 
took the form of a two-step process: specification and realization. As such, abstract syntax 
is not directly represented by being directly mapped to a predefined representation lan-
guage, as it is commonly the case using tools like GMF [Ecl06] or XMF [CESW05]. Our 
approach avoids pollution of concrete syntax by abstract syntax, and pollution of abstract 
syntax by concrete syntax. In the specification step, a language engineer specifies structure 
of the concrete syntax by defining a metamodel that organizes the representation data. The 
metamodel for concrete syntax is complemented by OCL constraints to state spatial rela-
tionships. For the concrete syntax graph to be synchronized with the abstract syntax graph, 
we introduced a mapping model complemented with OCL constraints to manage relation-
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ships between the two syntaxes. The main interest of this mapping model is that the abstract 
and concrete syntaxes do not need any dependency between each other. The realization step 
deals with icon representation and possible human interactions (i.e. how to edit a model via 
its representation). We proposed to define icons using SVG templates following example of 
chapter 3. We also proposed a predefined collection of DOM components to specify possi-
ble user interactions. DOM components are associated to events that can impact the con-
crete syntax graph according to specific code as embedded in SVG templates. Note that the 
collection of proposed DOM components may easily be extended in the future.

We proposed two approaches to model textual and graphical concrete syntaxes for 
modeling languages, respectively. These approaches require means to define mapping 
between metamodel and text structures, model matching, high-level visual constraint, icon 
templates, and user interactions able to impact both a model and its graphical representa-
tion. We provided solutions for each one of these points, that were validated by prototype 
tools (except regarding constraint solving). These solutions look likely to evolve while our 
experience in building modeling language improves, and may be replaced individually by 
comparable solutions without breaking the overall process (e.g. TCS [JBK06], triple graph 
grammars [Sch94], Cassowary [BMSX97], GMF [Ecl06], and model transformations 
[EEHT05], respectively). Further activities may also include improvements of prototype 
implementations, for instance by providing support for OCL constraint solving. Another 
possible field of research is to find solutions to improve homogeneity between textual and 
graphical concrete syntaxes. For instance, we could determine whether it is helpful and pos-
sible to apply a two-step process (specification and realization) for textual concrete syntax 
specification. We could also develop automatic model recognition from legacy diagrams, 
according to concrete syntax.

6.2 «A language that is used will be changed» [Leh80]

The solutions and approaches we presented in this document are only small (and perfect-
ible) steps towards agile language driven engineering. To define a language, one can pro-
vide his/her abstract syntax under the form of a metamodel, semantics possibly under the 
form proposed in [MB06], and concrete syntax according to this document. Nevertheless 
defining a language is not enough. As underlined in chapter 1, languages are likely to 
become the cornerstone of software development projects, and developing languages and 
methods from scratch to help engineering a small set of software projects is not an approach 
that can scale.

For LDE to be successful, we believe that a next step should be language composi-
tion, following the example of Component Based Software Development (CBSE) [Szy02]. 
Indeed, in CBSE, software systems typically use software components implemented and 
sold by third-party vendors (so called “off the shelf” components). Regarding language 
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engineering, this would mean to be able to reuse other languages, including tool support, to 
build a new language. An example of such composition of language could be Xion, as intro-
duced in chapter 3. Indeed, instead of building Xion from scratch, it would have been more 
agile to compose the OCL and Java languages, and to reuse an existing OCL to SQL com-
piler and a Java parser. To do so, we need facilities to select the parts of OCL and Java that 
are of interest in the context of defining an action language (i.e. Xion) for already custom-
ized UML class diagrams (i.e. the Netsilon’s business model). Composition of languages 
looks harder to achieve than composition of software, since it introduces additional prob-
lems. On one hand, languages should be developed for reuse, that is in a modular way, but 
interfaces may not be of same nature as software interfaces since they need to deal with 
abstract syntax, semantics, and concrete syntaxes. On the other hand, it must be possible to 
customize reusable languages. For instance, a reusable specification for OCL [ABF+06]
would ease the task of porting OCL to various versions of UML, MOF (avoiding constructs 
loosing their meaning such as pre or post conditions), or even relational databases. It should 
also be possible to add concepts to OCL at abstract syntax, concrete syntax and semantics 
levels (e.g. extensions proposed in [ZG03]). Solutions to complex reusability and variants 
specification can be found in the product family engineering community [Bos00].

Customizing a metamodel can be achieved by higher-order hierarchies [Ern03], for 
instance using constructs such as package merge as introduced by UML 2.0 [AAB+07]. To 
a smaller extent, metamodels can also be customized by the profile tag (or decoration) 
mechanism. We propose in appendix an example of adapting an LDE process using a tag 
mechanism, which is assumed to be available in the modeling languages that play a role in 
the process (at abstract and concrete syntax levels). Principle is to add new concepts in an 
intermediate abstraction layer, and to define corresponding interactive model transforma-
tions. A problem is that in-place automatic improvements below (i.e. after) the intermediate 
abstraction level need to be enhanced to cope with the inserted concepts. To do so, we show 
in a second part how to tailor a model transformation (which represents an improvement) by 
adding the aspect mechanism [KLM+97] to the MTL transformation language. Unfortu-
nately, the appendix only proposes specific examples to illustrate the problem of language 
adaptability. Further work and experiments are necessary to provide a more broad in scope 
solution.
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Appendix A:

Applying and Customizing LDE
LDE can be seen as a software development process definition facility (see section 2.1.1 on 
page 11). This appendix presents an example for the definition and the application of an 
LDE process when it comes to reuse or extend existing languages or improvements. In a 
first part, after introducing key technologies, we present an example that follows the LDE
principles. We also illustrate reusability of a modeling language by using tag mechanisms 
such as UML profiles. In a second part, we will improve an LDE methodology through 
model transformation customization. The technique we used follows principles of aspects 
oriented software development, that we adapt to the MTL model transformation language. 
For MTL to integrate an aspect-oriented programming facility, we defined an extension 
using a tag mechanism very similar to UML profiles. However, extensions we use here alter 
only abstract syntax, semantics being left to an interpretation engine and concrete syntax 
being already handled by an existing tag or profile mechanism.

The following were partly published in the Model Driven Architec-
ture: Foundations and Applications (MDAFA 2004) workshop 
[SFS04b] and in the 8th international IEEE Enterprise Distributed 
Object Computing (EDOC) conference held in 2004 [SFS04a].

A.1 Technologies

We first introduce here concepts of UML profiles and the MTL model transformation lan-
guage that are necessary for the rest of the appendix.

A.1.1 UML Profiles

UML (see section 2.1.2.5 on page 17) provides a standard set of extension mechanisms, 
including stereotypes, tag definitions, tagged values, and constraints. These mechanisms are 
used to specify how UML model elements can be customized and extended with new 
semantics. A coherent set of such extensions, defined for a specific domain or purpose, con-
stitutes a UML profile. The stereotype concept provides a way of branding (classifying) 
model elements. A stereotype creates a “virtual” UML metaclass by extending an existing 
UML metaclass with new meta-attributes and additional semantics. Meta-attributes are 
specified as tag definitions, which introduce new kinds of properties that may be attached to 
model elements. The actual properties of individual model elements are specified using 
tagged values. Simplifying, we could also say that a tag definition specifies the tagged val-
131



MTL
ues that can be attached to a kind of model element. The constraint concept allows new 
semantics to be specified linguistically for a model element. The language used can be a 
special constraint language (such as OCL [ABF+06]), a programming language, mathemat-
ical notation, or even natural language.

A certain number of UML profiles have already been defined, either for generic pur-
poses, such as the UML profile for SPEM, or to deal with specific middleware technologies, 
such as the CORBA profile [DDG+02], and the list could very well continue. A consensus 
appears to say that profile is a comprehensive mechanism to adapt UML to domain specific-
ities when gap is not important. Otherwise, one should seriously consider using another lan-
guage.

A.1.2 MTL

Among all model transformation languages presented in section 2.1.3.2 on page 22, we 
made an extensive use of the Model Transformation Language (MTL) [fRiCSI05, VJ04]. 
MTL, is an imperative model transformation language with a textual concrete syntax we 
developed at INRIA in 2003. MTL takes its roots in the Xion action language (presented in 
chapter 3) and is source of inspiration for the KerMeta project [MFV+05, Fle06]. The defi-
nition of the MTL language is an example of traditional language engineering: abstract syn-
tax is formalized by a metamodel, and concrete syntax by a compiler compiler specification 
(from which was generated a parser - see section 2.2.1) complemented with a hand-written 
visitor constructing the transformation model from concrete syntax tree. 

MTL was developed at the time QVT standard was under early study, when many 
radically different solutions were proposed. Still, even though QVT is now an almost pub-
lished standard, many different solutions exist together and adaptability to changes is still 
an issue while new paradigms continue to emerge. The idea of MTL is to provide all model 
transformation facilities, including the possibility to transform MTL transformations. This 
makes it possible for any future evolution of transformation languages to be mapped to an 
MTL transformation by means of an MTL transformation. This pivot approach has already 
been validated. The MTL itself is developed according to a bootstrapped approach: a simple 
language, called BasicMTL [Voj04], provides the most important facilities, such as classes 
or attributes, and new facilities are added by extending the abstract syntax and by making a 
transformation from the extended to the initial syntax, always relying in this way on the 
small “kernel” of BasicMTL. As an example, the n-ary navigable associations between 
classes have been added following such an approach.

As said before, MTL is an object-oriented imperative language for model transforma-
tions. Therefore, MTL transformations are defined as programs in terms of classes, meth-
ods, attributes, etc. In order not to confuse these MTL constructs with the ones that the 
manipulated models may contain, we will further on refer to them as MTL classes, MTL 
methods, MTL attributes, and so on. A special entry point, the main method, has to be 
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defined for each MTL transformation. Pieces of MTL transformations are organized in 
MTL libraries, each library being in addition responsible for holding models. Each such 
model can either be a collection of instances of MTL classes from an MTL library, or a col-
lection of model elements inside a repository.

MTL is a compiled language, figure A.1 presenting the compilation process. In order 
to compile an MTL transformation T described in an mtl file, the first step is to parse it. A 
parser ( ) reads the transformation as text and transforms it into an internal model that is 
compliant with the abstract syntax of MTL. In the next step, a type checker ( ) refines this 
model by adding information about types. For instance, in order to deal with polymorphism, 
it is the type checker that will perform the analysis of MTL methods in order to reference, 
for each of them, other MTL methods that they are overriding. If necessary, the types used 
by the transformation T might need to be referred from already compiled MTL libraries. For 
example, the MTL standard library, which defines the MTL predefined types and opera-
tions, is typically used by all MTL transformations, and thus, it participates in such library-
usage dependencies. In order for the MTL transformation T to be reused by other MTL 
transformations, its internal model, decorated with type information, is stored in a binary 
file (T.tll). In the end, a code generation step is performed ( ). Java source files that 
implement the behavior described by the internal (refined) model of the MTL transforma-
tion T are generated, and they will make use of the model repositories on which the imple-
mented transformation was defined to act. We used two * signs in figure A.1 in order to 
show that many precompiled libraries (*.tll) may be needed, on one hand, and several 
Java source files (*.java) may be generated, on the other hand, for one MTL transforma-
tion. If transformation T relies on other libraries, the generated Java source files for T will 
require the Java source files resulted from the compilation of those libraries.
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Figure A.1: The MTL Compilation Process
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A.2 Integrating Distribution Concern in an UML Model

With the rapid growth of the Internet and the associated web services revolution, distributed 
systems become more and more pervasive setting up new standards for modern industries. 
Current enterprise applications consist of heterogeneous components written in different 
programming languages and distributed in heterogeneous environments that comprise dif-
ferent hardware platforms, operating systems, data bases, and network protocols. The only 
way of masking these differences within an enterprise, or between enterprises, is by relying 
on middleware infrastructures, which can integrate diverse software components and allow 
them to interoperate effectively.

This section shows how an improvement step may be accomplished in an LDE devel-
opment process as depicted by figure A.2 when the modeling language of the more concrete 
layer is an extension of the more abstract layer. In a first step, we will consider the abstract 
system to be the description in pure UML class diagrams of the business model. The goal of 
the step is to integrate the distribution concern using a UML profile. The outcome of that 
first step will become the abstract system of a second refinement step that will be in charge 
of adapting the distributed system to the CORBA [ABB+04] middleware platform, using a 
second profile. To use an MDA terminology, we break here the strict separation between 
platform-independent models (PIM) and platform-specific models (PSM) by attributing dif-
ferent PIM or PSM roles to an abstraction layer. One may find a similar architecture in 
[ADvSP04]. As discussed in section A.2.3.1, the second profile inherits the first one using 
an higher-order hierarchy mechanism [Ern03]. If we believe that it is good LDE design 
when working with UML (or any profile-enabled language that is used in the two layers of 
a refinement step), this is not at all a mandatory requirement for applying LDE. Nor it is 
mandatory to use languages like UML or profile mechanism to practice good LDE.

This example is part of the enterprise fondue method [SS03, Sil06] and is further 
described in [SFS04a], though an overview is given in section A.2.2, especially regarding 
the distribution concern.

SystemSystemDistributed Model for CORBA (UML+Profile2)

Code

System

System

Code Generation

Code

System

System

Code Generation

Code

Business Model (UML)

Distributed Model (UML+Profile1)

Code Generation

Figure A.2: Refinement Steps to Integrate a Distribution Concern with UML
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A.2.1 From Object-Oriented Designs to Distributed Systems

From a rather pragmatic point of view, we argue in this section that UML diagrams lack 
precision when it comes to providing specific distribution information that is typically 
required for generating distribution code out of UML models. We also provide a simple 
example for business model expressed in UML.

Let’s consider the object-oriented design of a simple Bank system, like the one illus-
trated in figure A.3. We consider the example to be enough self-explaining for not entering 
into more details. It is important to mention nevertheless that not all designs follow the 
design by contract principles [JM97, BJPW99]. Typically, the interfaces in figure A.3 do 
not exist and clients act directly on the Bank, or on the Account, respectively. In that case, 
an intermediate “extract interface refactoring” [FBBO99, MB05] step is required in order to 
refactor the design and enforce good design principles.

Once we have a “good” design, based on interfaces, we would like to automate the 
distribution of such object-oriented designs on different middleware infrastructures, and we 
would like to achieve this as transparently as possible for the developer.

One key aspect of distributed systems is their location transparency. Typically, reg-
istries are used to store the location of distributed objects. Clients find and use services 
(i.e., the interfaces of distributed objects that were already bound into registries) and do not 
care where they are located. Flexibility is very much increased, since distributed objects can 
be moved around and run on different machines, without any impact on the client side. It is 
only the information published in registries, and the registries themselves, that clients and 
distributed objects must agree upon.

*
  1bank  

accounts

Client

Bank

+createAccount(name : String, bal : Double) : AccountI
+getAccount(name : String) : AccountI
+transfer(ac1 : String, ac2 : String, amount : Double)
#getAccountList() : Account [*]

«Interface»
AccountI

+getBalance() : Double
+withdaw(amount : Double)
+deposit(amount : Double)

Account

-name : String
-balance : Double

+getBalance() : Double
+withdaw(amount : Double)
+deposit(amount : Double)
-setBalance(amount : Double)

«Interface»
Bank

+createAccount(name : String, bal : Double) : AccountI
+getAccount(name : String) : AccountI
+transfer(ac1 : String, ac2 : String, amount : Double)

Figure A.3: The Bank Example
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Besides binding distributed objects into registries, there is also the problem of distrib-
uted interfaces. If we have a closer look at the Bank::createAccount(...) or 
Bank::getAccount(...) methods, we notice they both return AccountI interfaces 
back to the client. If we consider, for example, the CORBA technology for implementing 
the distributed system, code generators must generate a CORBA IDL for the AccountI
interface as well, otherwise the AccountI interface cannot be passed around in a CORBA 
distributed setting. As a consequence, this interface must have been previously marked as 
distributed inside the design model, so that code generators know to treat it properly.

As a conclusion, in order to be able to generate distribution code for a specific mid-
dleware infrastructure, design models must be refined and enhanced with distribution 
related information. But the question is how to model such distribution-related information 
in UML? How to specify that an interface should be distributed? How to specify that an 
object instance of class Bank should be the entry point of the distributed system? How to 
differentiate that object instance from other objects in the model in order to be able to bind 
it into a naming registry? How to infer that, because the BankI interface should be distrib-
uted, the AccountI interface should be distributed as well?

Of course, we are aware that component-oriented models address some of these issues 
up to a certain level through component and deployment diagrams. However, from the 
implementation point of view, when it comes to generating distribution code, we still have 
to rely on object-oriented programming constructs and specific middleware support. There-
fore, the work presented in this paper focuses only on the distribution of object-oriented 
designs, presenting new UML modeling elements for addressing distribution, and stressing 
the amount of distribution code that can be automatically generated from the enhanced 
object-oriented models. Moreover, we believe that it is a very good preliminary step before 
analyzing the actual support for generating a similar amount of distribution code out of 
component-oriented designs based on information that can be retrieved or inferred from 
component and deployment diagrams.

A.2.2 Enterprise Fondue and the Distribution Concern

The Enterprise Fondue software development method brings together four important para-
digms in software engineering, namely Component-Based Software Engineering (CBSE), 
Separation of Concerns (SoC), Model Driven Architecture (MDA), and Aspect-Oriented 
Programming (AOP), and shows how they can complement each other at different stages in 
the development life-cycle of enterprise, middleware-mediated applications. The method 
identifies five layers corresponding to different levels of abstraction, each layer addressing 
specific concerns that pertain to enterprise applications in general. Model transformations 
are used to refine design models inside the same layer, or between different layers, along 
specific concern-dimensions.
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For consistency reasons, we tend to use the terms middleware-specific concern-
dimensions in relation with the refining activity (“refining along a dimension”), and middle-
ware-specific concerns in all other contexts. Nevertheless, both terminologies refer to the 
same concepts, i.e., distribution, concurrency, transactions, security, and so on.

Figure A.4 presents how the refinement process in Enterprise Fondue evolves from 
one abstraction level to the next one by incremental refinements along different concern-
dimensions. We use a mixed notation for representing the process flow, on one hand, and 
for representing UML 2.0 dependencies or relationships between modules, on the other 
hand.

The first refinement step is performed by the MTL1 transformation. In the Enterprise 
Fondue terminology, we say that MTL1 refines along a middleware-specific concern-dimen-
sion (Cx) according to an associated UML profile for that concern. This transformation is 
performed inside the Concern-Driven Object-Oriented Models Layer (L2) as defined in 
Enterprise Fondue. MTL1 will refine here along the distribution concern-dimension. How-
ever, several MTL1s can be applied at this layer, addressing different middleware-specific 
concerns.

The second refinement step is performed by the MTL2 transformation, that is, in the 
Enterprise Fondue terminology, along the technology-dimension (Ty). Actually, in the 
Enterprise Fondue, MTL2 is a sequence of model transformations (not necessarily two), but 
for sake of clarity, we will avoid that aspect. Globally, the transformation correspond to 
refinement along middleware-specific concern-dimensions according to UML profiles for 
those concerns on the specific technology (Cx on Ty). All these transformations are per-
formed inside the Technology-Dependent Layer (L1) as defined in Enterprise Fondue. For 
example, by refining along the CORBA technology-dimension, we will first apply the UML 
profile addressing the distribution concern on the CORBA technology (the CORBADistri-
butionRealizationProfile, as it will be introduced in section A.2.3.3).

Finally, the code generation step is handled by the Parallax [SS05, Sil06] tool config-
ured to handle the concern with the technology. Parallax also covers both the Platform-
Dependent (Pz) and Language-Dependent (Lw) layers of Enterprise Fondue (L0).

A.2.3 UML Profiles to Address the Distribution Concern

The hierarchy of UML profiles presented in this section addresses the distribution concern 
in an MDA-oriented fashion at three different levels of abstraction: at a platform-indepen-
dent level, at an abstract realization level, and at a concrete realization level for the 
CORBA technology (see figure A.5). We rely on specialization relationships between dis-
tribution profiles: each specialization introduces new modeling elements or simply refines 
the already existing ones.
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A.2.3.1 UML Distribution Profile

The purpose of distribution is to logically, or even physically separate communicating ele-
ments, typically a “core” system from its users. In UML, what these elements know about 
each other is described in terms of interfaces. UML interfaces are defined as sets of coher-

Figure A.4: Refinement Process in Enterprise Fondue
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ent publicly available features and obligations, fulfilled at runtime by instances of classes 
realizing them. The distribution process should end-up in subsystems communicating 
through known interfaces. We qualify these interfaces as distributed. This additional infor-
mation can be added to the model of the system by applying the DistributionProfile
presented in figure A.5 .

To make a difference between what interfaces are used for communication within a 
system and between systems, the profile defines the «Distributed» stereotype as an 
extension of the Interface metaclass as shown in figure A.5 . All features defined 
within a «Distributed» interface are remotely available. In the case a «Distributed»
interface extends other interfaces, available remote features are only those defined within a 
«Distributed» interface, allowing in this way to separate between distributed and not 
distributed interfaces even within the same hierarchy of interfaces. For instance, the follow-
ing OCL query may be defined within the scope of the «Distributed» stereotype to find 
all its remotely available operations:
context Distributed 
def: allRemoteOperations : Set(Operation) = 
  self.ownedOperation->union( 
    self.allParents() 
     ->select(oclIsKindOf(Distributed)) 
     .ownedOperation 
  )

We have assumed here that the predefined OCL oclIsKindOf operation holds true 
if a model element has the stereotype passed as parameter. A similar query may also be 
defined to know about all remotely available attributes.

Nevertheless, it is also necessary to indicate key instances that the environment needs 
to know in order to start-up an interaction with the system as an entity. They are identified 
by applying the «Servant» stereotype. As these instances receive invocations from the 
environment, their class must realize a “well-known” «Distributed» interface, that is 
why «Servant» and «Distributed» stereotypes are associated as shown in 
figure A.5 . This allows one, once these stereotypes are applied on corresponding 
instances and interfaces, to indicate at the model level what are the «Servant» instances 
of a «Distributed» interface, and what are the «Distributed» interfaces of a «Ser-
vant» instance. As indicated by multiplicities of the association , a «Servant» instance 
must realize at least one «Distributed» interface, otherwise a client application does not 
know how to communicate with it. On the other side, a «Distributed» interface may be 
connected to any number of «Servant» objects. If none, it means the given interface does 
not participate in any interaction set-up. If a «Distributed» interface defines many 
«Servant» objects, this means the system has many entry points with this interface.

For the profiled model to be consistent, it is important to add a constraint stating that 
one of the classes of each «Servant» object must realize the «Distributed» interface it 
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is related to through the distributed association end . This constraint is given in 
figure A.5 .

Thought very comprehensive and understandable, one may remark that associations 
between stereotypes are not allowed in UML. Nevertheless, a stereotype may declare a tag 
definition whose type is a metaclass. We define thus the association from stereotype S1, 
which extends metaclass C1, to stereotype S2, which extends metaclass C2, by a tag defini-
tion in S1 whose type is C2 with the additional constraint that the corresponding tagged val-
ues are stereotyped with S2. Tag definition are crossed in case of bidirectional association.

A.2.3.2 UML Abstract Distribution Realization Profile

The purpose of the AbstractDistributionRealizationProfile is to provide a 
framework to describe which «Servant» instances are made available to the outside 
world, how, and where. We enter here the technology-dependent layer (L1) described in 
figure A.4. As this profile specializes entities described in the DistributionProfile, it 
merges this latter profile and as a consequence integrates into it all its stereotypes and tag 
definitions.

The «PublishedServant» stereotype is a specialization of «Servant», in order 
to show that «Servant» instances may be exposed to the outside world. Such «Servant»
instances will be further referred as «PublishedServant» instances (PSI). Due to the 
specialization, the «PublishedServant» stereotype inherits the InstanceSpecifi-
cation base class, the distributed tag definition, and the constraint , which must 
now hold for all elements conforming to this stereotype as well.

A «Publisher» is a «PublishedServant» instance specialized in making avail-
able a given «PublishedServant» to the outside world. This means that in order to 
interact with a PSI, an actor from the environment should first locate it by sending a request 
to a «Publisher» instance. How an external actor localizes a «Publisher» is voluntar-
ily left unresolved and should be defined by specializing the «Publisher» stereotype 
according to the concrete technology to be used. This is the reason why the «Publisher»
stereotype is abstract. For instance, if the Bank example of figure A.3 is made distributed, a 
Client should first retrieve the right «Servant» Bank instance by sending a request to a 
«Publisher» instance. Because the «Publisher» stereotype inherits the «Pub-
lishedServant» stereotype, an instance stereotyped «Publisher» is also a PSI, and 
may be published by another «Publisher» instance.

The relationship between a «PublishedServant» and a «Publisher» is 
expressed by the «Exposition» stereotype. Unfortunately, there is not really an ideal 
relationship between instances in the UML metamodel that this stereotype could extend. 
Therefore, we decided to make the Comment metaclass the base class of this stereotype. 
Information of what is published and who is the publisher is gathered through the 
associations  and  respectively. The constraint  requires all the «Exposition» com-
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ments to be attached to both the «Servant» and the «Publisher» instances. A given 
PSI may be published several times within several «Publisher» instances, and con-
versely, a «Publisher» may expose several PSIs, all these relationships being modeled 
through «Exposition» comments.

«Publisher» and «Exposition» are abstract stereotypes. Therefore, they cannot 
be applied to a model element as such, because some registration information needs to be 
provided. We include therefore in the profile a kind of “reference implementation”, 
although it would be possible to define an additional independent profile that extends the 
AbstractDistributionRealizationProfile and describes additional information 
required by another implementation mechanism.

As a first reference implementation mechanism, we propose to register a PSI by 
names, which are character strings, within a «Publisher» instance. We therefore define 
«NamingRegistry» as an extension of the «Publisher» stereotype, together with the 
«NameExposition» as an extension of the «Exposition» stereotype. The registration 
names are stored in the exposedNames tag definition, that is defined in the «NameExpo-
sition» stereotype. This tag definition has a 1..* multiplicity meaning that the PSI can 
be exposed by at least one name. A «NamingRegistry» may only publish PSIs through a 
«NameExposition», and a «NameExposition» may only refer to a «NamingRegis-
try». This is enforced by the constraint . This kind of exposition mechanism looks like 
the one of the phone directory of residents (“white pages”).

As a second mechanism, we propose to register a PSI with the services it can offer. 
For instance, one can ask the environment for a printer, provided that there is a printer that 
knows about how to print PostScript documents. This mechanism is described by the couple 
of stereotypes «ServiceRegistry» for the publishing part and «InterfaceExposi-
tion» for the exposition part. This time the registration is performed by means of inter-
faces, referenced by the tag definition exposedInterfaces within the 
«InterfaceExposition» stereotype. Again, a constraint ( ) states that they should be 
used together and only together. This kind of exposition mechanism looks like the one of 
the business phone directory (“yellow pages”).

A.2.3.3 UML CORBA Distribution Realization Profile

The CORBADistributionRealizationProfile addresses the realization of the distri-
bution concern when the implementation is supposed to use the CORBA technology. It 
takes advantage of the AbstractDistributionRealizationProfile by adapting its 
abstract concepts to the CORBA technology, so that a code generator has enough informa-
tion to generate the necessary distribution code.

The «CORBANameExposition» stereotype represents a «NameExposition»
using the CORBA technology. It extends the «NameExposition» but does not add partic-
ular information to it. The idea here is to state clearly that a PSI is registered by name using 
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the CORBA technology. The same holds for the «CORBANamingService» stereotype that 
extends the «NamingRegistry». In order for an actor of the environment to find the 
«CORBANamingService», we add the host and port tag definitions. As previously, an 
OCL constraint ( ) enforces that these two stereotypes work together and only together. 
This constraint also enforces that exposition names are all different within the context of a 
«Publisher».

We chose to describe here only the CORBA technology, but the same principle may 
be applied to any kind of middleware technology, possibly with additional intermediate pro-
file specialization steps.

A.2.4 MTL Model Transformations for Applying the UML-D Profiles

We present in this section the model transformations that incrementally refine existing 
design models according to the UML-D Profiles introduced in the previous section using the 
MTL language (see section 2.1.3.2). The Bank example (figure A.3) is used for illustrating 
the refinement process.

A.2.4.1 Refining Along the Distribution Concern-Dimension

The distribution transformation (MTL1-D) is refining centralized design models along the 
distribution concern-dimension according to the DistributionProfile presented in 
section A.2.3.1. Its name indicates, on one hand, that it belongs to the MTL1 family of trans-
formations (as shown in figure A.4), and on the other hand, that it is related to the distribu-
tion concern.

In order to achieve the distribution, the transformation requires the developer to pro-
vide information about the interfaces that the «Servant» object should realize. These spe-
cial interfaces will be further referred as «Servant» interfaces (SIs). If several 
«Servant» objects are needed, then the transformation may be called several times. As 
already mentioned in section A.2.1, we rely on the premise that all interactions with the 
environment occur through well-defined interfaces.

In the first step, the MTL1-D transformation “imports” the DistributionProfile
into the model, making available the UML extensions it defines. The second step is to find 
the right classifier for the «Servant» object. Note that if more than one classifier realizes 
all the interfaces the developer has specified, then the MTL1-D transformation may choose 
an arbitrary one, or ask the developer to choose among the possible realizations; if no class 
is found, then the transformation ends in error, without modifying the model. Once the right 
classifier is found, the corresponding SIs are marked with the «Distributed» stereotype 
and an object instance of the found classifier is created and marked with the «Servant»
stereotype. As these stereotypes are associated, it is still necessary to provide crossed 
tagged values as specified in section A.2.3.1. This means that the «Servant» object refer-
ences its SIs by means of the distributed tagged value, and each SI references its 
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«Servant» objects by means of the servants tagged value, according to the Distri-
butionProfile.

The last step of the MTL1-D transformation is to infer all interfaces that participate in 
interactions with the environment and to stereotype them «Distributed» as well. To this 
end, the transformation explores, starting from the provided SIs, the types of parameters of 
all operations, and the types of all attributes of each interface. While exploring, all encoun-
tered interface types are stereotyped «Distributed» (if not yet the case), and recursive 
explorations are started for each such interface. The MTL code for this exploration is shown 
in figure A.6.

As an example, we show in figure A.7 the outcome of the MTL1-D transformation on 
the Bank example when BankI is the only SI requested by the developer. As you can see, 
BankI gets stereotyped as «Distributed» ( ). An object of class Bank, the only clas-
sifier realizing the BankI interface, is created and stereotyped «Servant» ( ). The 
tagged values are shown in grey colored notes. Due to the association between «Distrib-
uted» and «Servant» stereotypes (as defined in the profile), the «Distributed»
BankI interface references its SIs by means of the servants tagged value ( ), and the 
«Servant» b references the «Distributed» BankI interface by means of the dis-

//Within the MTL class Distributor 
treatOperationDependencies() { 
  i1 : Standard::Iterator; 
  i2 : Standard::Iterator; 
  pa : m::Core::Parameter; 
 
  i1 := toDistribute.feature.getNewIterator(); 
  while i1.isOn() { 
  if i1.item().oclIsKindOf(!m::Core::Operation!) { 
    i2 := i1.item() 
           .oclAsType(!m::Core::Operation!) 
           .parameter.getNewIterator(); 
    while i2.isOn() { 
       pa := i2.item(); 
       new Distributor() 
        .init(self,pa.type).run(); 
       i2.next(); 
    } 
  } 
  i1.next(); 
}}

Figure A.6: The MTL1-D Transformation: Exploring Operations Part
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tributed tagged value ( ). As the «Distributed» BankI interface contains opera-
tions, such as createAccount and getAccount, involving the AccountI interface, this 
last interface is stereotyped «Distributed» as well, but with an empty servants
tagged value ( ).

A.2.4.2 Refining Distribution 
Along the CORBA Technology-Dimension

The CORBA distribution realization transformation (MTL2-D) is refining distributed mod-
els along the CORBA technology-dimension. More precisely, it refines models, to which 
the DistributionProfile was already applied, to ones that are more specific about 
how the distribution concern is actually implemented on the CORBA technology. As previ-
ously, the name indicates that it belongs to the MTL2 family of transformations (as shown in 
figure A.4), on one hand, and that it is related to the distribution concern, on the other hand.

In order to be able to apply the CORBADistributionRealizationProfile, the 
MTL2-D transformation requires the developer to provide all the new information that this 
profile adds with respect to the DistributionProfile. Indeed, MTL2-D needs to be 
able to provide each CORBA publisher (i.e., CORBA Naming Service [BDII02], «CORBA-
NamingService») with its name, host and port, and each PSI with its expositions 
(«CORBANameExposition») containing the names to be exposed (exposedNames) and 
the publisher to be used (publisher). The transformation does not integrate any 
«InterfaceExposition», which is more related to the Trading Service [ABH+00] of 
CORBA that is not discussed in this paper.

Like for MTL1-D, the first step of the MTL2-D transformation is to “import” the 
CORBADistributionRealizationProfile into the model. The MTL2-D also 
“imports” standard CORBA libraries, like the interface of the CORBA publisher, which is 

«Interface»
«Distributed»

BankI

«Interface»
«Distributed»

AccountI

Bank Account

«Distributed»
  servants = Set{b}

«Servant»
b:Bank

«Servant»
  distributed= Set{BankI}

Class Diagram
Object Diagram

«Distributed»
  servants = Set{}

Figure A.7: The MTL1-D Outcome for the Bank Example
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org::omg::CosNaming::NamingServiceExt. Then, the transformation creates 
«CORBANamingService» publisher objects and sets their host and port tagged values 
according to the provided parameters. Since «CORBANamingService» inherits from the 
«Servant» stereotype the distributed tag definition, and because of its multiplicity 
1..*, it is necessary to provide it with a value. Other inherited tagged values are not man-
datory as their lower bound multiplicity is zero and because they would have no meaning 
for the «CORBANamingService» publisher. Moreover, as the «CORBANamingSer-
vice» publisher instance provides behaviors described in the NamingServiceExt inter-
face, this interface must be stereotyped as «Distributed». The distributed and 
servants tagged values are used to relate the instance and the interface together.

At the end, the MTL2-D transformation creates the expositions as specified by the 
developer. As defined in the profile, each «CORBANameExposition» is a Comment on 
the PSI and the «Publisher» instance, which are referenced through the servant and 
publisher tagged values respectively. Both the PSI and the «Publisher» («CORBAN-
amingService» in our case) know about the «Exposition» comment by means of the 
expositions and exposed tagged values respectively. The exposed names of a «COR-
BANameExposition» are stored in the exposedNames tagged value. figure A.8 shows 
the MTL code for this last step.

The outcome of the MTL2-D transformation for the Bank example is shown in 
figure A.9. The source model for the transformation is the one shown in figure A.7. The 
MTL2-D provides one «CORBANamingService» publisher object cns ( ) and sets its 
distributed tagged value to reference the NamingServiceExt interface. The «Dis-
tributed» stereotype was applied to this last interface and its servants tagged value 
was set to reference the cns, but this is not depicted here. The diagram also shows the b
object, which was applied the «PublishedServant» stereotype ( ). A new comment, 
named BankExposition, with stereotype «CORBANameExposition», represents the 
expositions ( ), and it is referenced by the expositions and exposed tagged values in 
the b and cns instances respectively. This comment annotates these instances and refer-
ences them with the servant and publisher tagged values respectively. For the sake of 
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//The exposition 
//- publisher is the publisher object 
//- servant is the published servant object 
//- profile is an MTL proxy for the 
//          CORBADistributionRealizationProfile 
//- expositionName is the provided name 
//                 of the exposition 
//- publishedNames are the names the servant 
//                 is registered with 
ex := new m::Core::Comment(); 
ex.name := expositionName; 
associate ( 
comment := ex : m::Core::Comment, 
annotatedElement := servant 

 : m::Core::ModelElement); 
associate ( 
comment := ex : m::Core::Comment, 
annotatedElement := publisher 

 : m::Core::ModelElement); 
 
profile.applyStereotype(ex, 
profile.cORBANameExposition); 

 
profile.setTaggedValueData(servant, 
profile.publishedServantExpositionsTag,ex); 

 
profile.setTaggedValueData(publisher,  
profile.publisherExposedTag, ex); 

 
profile.setTaggedValueData(ex, 
profile.expositionServantTag, servant); 

 
profile.setTaggedValueData(ex, 
profile.expositionPublisherTag, publisher); 

 
profile.setTaggedValueData(ex, 
profile.nameExpositionExposedNamesTag, 
publishedNames);

Figure A.8: The MTL2-D Transformation: Creating Exposition Part
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clarity, all tagged values have been provided, even if empty, and classified according to the 
stereotype in which they where declared.

A.2.5 Conclusions

The Enterprise Fondue method proposes a systematic approach for addressing pervasive 
services in an MDA-compliant manner, at different levels of abstraction, through incremen-
tal refinement steps along middleware-specific concern-dimensions. In this section, we 
introduced the key elements that support the Enterprise Fondue method when refining along 
the distribution concern-dimension, namely: (1) the UML Profiles for Distribution (UML-D 
Profiles) that address the distribution concern in an MDA-oriented fashion at three different 
levels of abstraction (platform-independent level, abstract realization level, and concrete 
realization level), (2) the model transformations that incrementally refine existing design 
models (within the same or between different MDA-levels) along distribution-related con-
cern-dimensions and in conformance to the proposed UML profiles, and (3) the Parallax 
support for generating code towards specific middleware infrastructures. The CORBA tech-
nology was used to illustrate how the refinement process evolves on a concrete example.

This example follows the prescriptions of LDE. It applies a stepwise refinement pro-
cess taking advantage of model transformation. This section actually introduced Enterprise 
Fondue as an LDE methodology by stating, as prescribed in section 2.1.1 on page 11, (1) 
what are the levels of abstraction and their platforms (Business Model, Distributed Model, 
Distributed Model for CORBA), (2) what are the languages to use (UML, UML + Distri-
buitonProfile, UML + CORBADistributionRealizationProfile), (3) the refinement process 

«PublishedServant»
b:Bank

«CORBANamingService»
cns:NamingServiceExt

«CORBANameExposition»
BankExposition

«Exposition»
  servant= b
  publisher= cns
 
 «NameExposition»
  exposedNames= Set{'BCV'}
 
 «CORBANameExposition»

«Servant»
  distributed= Set{Bank}
 
  «PublishedServant»
  expositions= Set{BankExposition}

«Servant»
  distributed= Set{NamingServiceExt}
 
 «PublishedServant»
  expositions= Set{}
 
 «Publisher»
  exposed= Set{BankExposition}
 
 «NamingRegistry»
 
«CORBANamingService»
  host= '127.0.0.1'
  port= '3028'

Figure A.9: The MTL2-D Outcome for the Bank Example
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(MTL1 and MTL2 transformations), (4) the code generation process (Parallax), even 
though (5) verification and testing were left aside.

The example presented in this section also shows how an LDE methodology can be 
tailored to support new concepts introduced in intermediate steps. Indeed, the genuine LDE
methodology states that one should develop the system under study using the UML lan-
guage. Then, code is generated out of the UML model. We introduced here new concepts 
relative to distribution in a first step, and distribution using the CORBA platform in a sec-
ond step. For the LDE methodology to be properly tailored, we enhanced the modeling lan-
guage (i.e. UML) using a tag mechanism, and we introduced semi-automatic 
improvements. A problem is that code generation needed to be tailored as well. In our 
example, we used the aspect-oriented customization mechanism offered by the Parallax 
code generator [SS05].

Figure A.10 shows a generalization of LDE methodology customization. At the left, 
the genuine LDE process states that the system under study must be modeled first using the 
L1 language. The model is then improved by I1, I2 and I3, producing specifications using 
the L2, L3, and L4 languages, respectively. A final code generation step is performed to 
obtained the final implementation. The right part of the figure shows the same LDE process, 
slightly enhanced, to integrate a new concern, following the example of the distribution 
concern that introduces new concepts to the UML language, as presented in this section. 
The new concern is introduced by an II improvement (following the example of the MTL1-
D and MTL2-D transformations), that integrates the concern using an enhanced version of 
the L2 language (L2++). For those enhancements to be lost neither by further improvements 
(I2, I3, and code generation), nor by languages of the next steps (L3, L4, and target code), 
improvements and languages needs to be customized either (I2++, L3++, etc.), unless the 
new concern is handled by a library (see section 1.1 on page 1). If languages can be custom-
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Figure A.10: Customizing an LDE Process
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ized using higher-order hierarchies or tag mechanisms (as shown in this section), and code 
generation can be customized using the approach proposed by Parallax [Sil06], one needs 
means to customize improvements. We propose in the next section a mean to customize 
improvements, when they are defined as MTL model transformation.

A.3 AspectMTL: Customizing Improvements

Model transformations are undoubtedly one of the key technology in the realization of the 
LDE vision, and thus one need transformation languages to apply an LDE process [SK03]. 
Among other usages, model transformations are the ones responsible for refining models 
for example to map them to concrete middleware-based implementations, providing thus an 
elegant approach to adapt system specifications to the peculiarities of the new middleware 
infrastructures that do not cease to appear as an example in previous section.

LDE also promotes reuse and adaptation of existing languages to particular needs. 
Model transformation languages thus may be adapted to the needs of a particular LDE
methodology (i.e. an LDE instance). We propose in this part to improve reusability of the 
transformations in use in the LDE process presented in previous section, thus reusability of 
the complete methodology. This will require to change the Model Transformation Language 
(MTL - see section A.1.2) that is employed to implement the transformations.

Model transformations should be able to act on any kind of model of any kind of meta-
model. Since model transformations are at the same time models compliant with the meta-
model of the transformation language, model transformations should be able to transform
other model transformations independently of their metamodels. As a consequence, all 
existing model transformation languages (to our knowledge) implement such a “reflective”
behavior. However, the "reflective" use of model transformations is not trivial.

Typically, writing model transformations for driving the development process of 
domain-specific applications requires the transformation developer to be familiar with the 
metamodel of that specific domain and with the syntax of the model transformation lan-
guage used – and no more than that. As a consequence, many transformation developers are 
not at all familiar with the metamodel of the transformation language itself, and thus they 
are not capable of writing "reflective" model transformations, i.e., model transformations 
that transform already existing model transformations.

We present here a solution inspired by Aspect-Oriented Programming (AOP) 
[KLM+97] approaches. We have designed and implemented an MTL weaver that modifies 
MTL transformations according to some weaving behavior that is specified as a special 
kind of MTL transformations, called MTL-aspects. The MTL transformation produced by 
the MTL weaver can be immediately used for refining application models.

As in the case of AspectJ [KHH+01], which is an aspect-oriented extension to Java, 
the syntax defining the weaving behavior in MTL-aspects is a small AOP-like extension to 
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the MTL language itself. In this way, relying on a few high-level AOP-like but MTL-based 
constructs for defining the weaving behavior, average MTL transformation developers 
should not have any problems using this MTL extension straightforwardly for defining their 
"reflective" model transformations.

The entire compilation process of the MTL language as presented in figure A.1 of 
section A.1.2 relies on the model of the MTL transformation T itself, which complies with 
the well-defined MTL metamodel. Therefore, steps , , and  of figure A.1 can be 
viewed as special transformations acting on the MTL model of the transformation T itself. 
Besides these three steps, it is at this MTL model level of the MTL transformations that new 
special transformations may be defined in order to change the very behavior of those MTL 
transformations. Following this idea, our MTL weaver is indeed implemented as such a spe-
cial transformation, acting on the MTL models of the MTL transformations and transform-
ing them according to the weaving behavior defined in MTL-aspects, as we will see in 
section A.3.2.

A.3.1 Motivations

We present in this section how currently applied MTL transformations benefit from the 
weaving support provided by the MTL weaver, promoting the separation of concerns para-
digm even at level of model transformations.

Separation of concerns [Par72] and modularity are fundamental techniques of soft-
ware engineering. Decomposing software into smaller, more manageable and comprehensi-
ble parts, each of which encapsulating and addressing a particular area of interest, called a 
concern, is a well-proven method towards developing applications that are easy to config-
ure, adapt, or extend according to changes in the requirements specification.

Middleware is an essential element in large distributed systems such as those that sup-
port enterprise applications, requiring multiple heterogeneous components to interoperate. 
Previous section has shown that middleware, like software in general, is subject to con-
cerns. Several concern-dimensions about middleware can be grouped into a category called 
Middleware Services, as the middleware addresses specific concerns of a system, such as 
distribution, concurrency, security, or transactions. An extended list of categories that group 
several middleware-specific concern-dimensions can be found in [Sil06]. In the context of 
Enterprise Fondue we defined several MDA-oriented UML profiles that address middle-
ware-specific concerns at different levels of abstraction. MTL transformations were used to 
incrementally refine existing design models (within the same or between different MDA-
levels) along middleware-specific concern-dimensions and according to the UML profiles 
defined. A complete example of applying the Enterprise Fondue method for addressing the 
distribution concern in the concrete case of the CORBA technology was also presented. The 
proposed UML-D Profiles address the distribution concern at three different MDA-levels of 
abstraction: platform-independent level (the DistributionProfile), abstract realiza-
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tion level (the AbstractDistributionRealizationProfile), and concrete realiza-
tion level (the CORBADistributionRealizationProfile).

Based on the support provided by the MTL weaver, we refactored the MTL transfor-
mation that refined application designs in the context of the Enterprise Fondue method 
along the distribution concern-dimension and according to the DistributionProfile. 
Out of one big model transformation that performed the entire refinement, we have now one 
standard MTL transformation that performs the copy of an input model to an output model, 
both models being compliant with the same UML metamodel, and a very small MTL-aspect 
that defines the weaving behavior according to the DistributionProfile that has to be 
applied. Both the MTL-Copy transformation and the MTL1-D-Aspect are now fully sepa-
rated as they should be, since they address totally different concerns. Figure A.11 a sketches 
the refinement process in the presence of the MTL1-D-Aspect, or more general in the 
presence of MTL-aspects. Its name, MTL1-D-Aspect, was chosen in accordance with the 
MTL1-D transformation. The MTL-Distribution-Copy transformation is the result pro-
duced by the weaver when modifying the MTL-Copy transformation according to the weav-
ing directives defined in the MTL1-D-Aspect.

A more complex example is shown in figure A.11 b, where the metamodel of the 
input and output models changes. In this example we move from a UML model to a Java 
model ready to be mapped to concrete Java implementation. Considering as input the output 
model of the previous refinement process, we refine this time along the RMI-technology 
and Java-language concern-dimensions as defined in the context of the Enterprise Fondue 
method. While the MTL-UML2Java deals with transforming any UML model to its corre-
spondent Java model (relying on their respective metamodels), the MTL2-D-Aspect
addresses how distribution specific elements in the UML model are transformed into their 
Java model counterparts when employing RMI as their implementation technology. For 
instance, interfaces marked as «Distributed» in the UML model will extend 
java.rmi.Remote in the Java model; similarly, the class of the object marked as «Ser-
vant» will extend java.rmi.UnicastRemoteObject in the Java model, and so on. 
Once again, the name, MTL2-D-Aspect, was chosen in accordance with the MTL2-D
transformation even though we considered this time another technology, i.e., we have cho-
sen RMI instead of CORBA. The MTL-RMI-UML2Java transformation is the result pro-
duced by the weaver when modifying the MTL-UML2Java transformation according to the 
weaving directives defined in the MTL2-D-Aspect.

As can be seen in figure A.11, the support provided by the MTL weaver has enabled 
us to make modular the different concerns in stand-alone units of encapsulation represented 
by MTL-aspects. In this way, we give transformation developers not only the possibility, 
but also the means to rely on the well-proven power of separation of concerns even at model 
transformation level. Moreover, the size of such MTL-aspects is very much reduced, com-
pared to their corresponding implementation in the initial MTL transformations, since they 
rely on the MTL weaver which is now the one carrying all the burden of the weaving. The 
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example presented in figure A.11 a is reconsidered further on in section A.3.2 where we 
discuss in more details its complete implementation.

Besides encapsulating middleware-specific concerns into MTL-aspects as presented 
in this section, the number of possible usages of such MTL-aspects is unlimited since the 
support provided by the MTL language enables us to implement almost anything in the 
MTL weaver, and thus, the expressiveness power that could be provided to transformation 
developers through the MTL extension syntax may be very broad, covering all possible and 
impossible needs that developers may think of.

A.3.2 The MTL Weaver

Reusability has always been an important concern in the software development industry due 
to its potential to reduce the cost of software development. During the last decade, different 
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levels of reuse have been proliferated, such as functions, procedures, classes, components, 
aspects, or even entire models. But how can we achieve the reuse of model transformations? 
How to adapt existing model transformations that already accomplish most of our needs?

The reuse of MTL transformations is currently promoted at the level of MTL librar-
ies, which are some kind of light model transformation components. In this section, we 
present some implementation details and the provided facilities of an aspect-oriented sup-
port that allows transformation developers to reuse existing MTL transformations and to 
easily adapt them in order to address new needs, or concerns, that the application under 
development has to incorporate. The main concepts of the MTL weaver are introduced 
along with the AOP-like extension to MTL for defining the weaving behavior in 
MTL-aspects. We also present an example showing both the input and the output of a con-
crete weaving.

The standard MTL language already provides support for transformation developers 
to define MTL transformations that transform other MTL transformations. However, writ-
ing such "reflective" MTL transformations still requires transformation developers to be 
familiar with the metamodel of the MTL language itself, a requirement that significantly 
reduces the number of such developers. In order to overcome this impediment for the MTL 
language, we propose a solution inspired by AOP approaches. We have designed and imple-
mented an MTL weaver that modifies MTL transformations according to some weaving 
behavior that is specified in terms of weaving directives modularized in special stand-alone 
MTL transformation encapsulation units, called MTL-aspects. As in the case of AspectJ, 
which is an aspect-oriented extension to Java, the syntax defining the weaving behavior in 
MTL-aspects is a small AOP-like extension to the MTL language itself. In this way, relying 
on a few high-level AOP-like but MTL-based constructs for defining the weaving behavior, 
average MTL transformation developers should not have any problems using this MTL 
extension straightforwardly for defining their "reflective" model transformations.

The place of the MTL weaver in the MTL compilation process and the evolution of 
the MTL weaving process are presented in figure A.12, where the MTL transformation T is 
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refined according to the weaving directives defined in the MTL-aspect A. The weaving pro-
cess is very similar to the compilation process presented in figure A.1. First, both T and A
are parsed ( ) in order to transform the two text files into internal MTL models compliant 
with the MTL metamodel. The important change comes next, when the MTL Weaver ( ) 
reads the two internal models of T and A, and produces a new model instance (of the MTL 
metamodel) for the new MTL transformation T+A, which represents the result of modifying 
T according to the weaving directives defined in A. Even though it is not explicitly shown in 
figure A.12, the MTL weaver itself is implemented as an MTL transformation as well. Once 
this weaving step is finished, the normal compilation process can continue with the type 
checking step ( ), which produces a reusable precompiled MTL library, and the code gen-
eration step ( ), which produces Java source files. Please notice that the weaving process 
results in a completely new MTL transformation, without making any changes to the origi-
nal MTL transformation T. In this way, both transformations can independently be reused 
later on in order to transform application models. Moreover, the MTL-aspect A may be 
reused as well for refining other MTL transformations according to the same weaving direc-
tives. Another remark is that we reused as is elements of the MTL "official" compiler of 
section A.1.2 so that only the MTL weaver had to be implemented.

A.3.3 MTL-Based Syntax for Describing the Weaving Behavior

There are two major requirements that an MTL-aspect must fulfill. First, it must 
clearly identify where the modifications have to be performed, and second, it must clearly 
define what are those modifications. In AOP terminology, a join point is a well-defined 
point in the execution of a program where additional functionality may be "injected". To 
identify such points in our weaving process, a pattern matching mechanism is used with 
respect to the names of the MTL libraries, MTL classes, MTL methods, etc. Both require-
ments can be expressed using the MTL syntax as well, relying on small extensions that are 
detailed in this section.

One of the extension mechanisms proposed by the MTL language is the tagging facil-
ity. Tags are key/value pairs associated either with an MTL library, an MTL class, or an 
MTL method. Since tags are part of the MTL metamodel, once they are analyzed by the 
MTL parser, they populate the internal MTL model representing the MTL transformation. 
This makes it possible for the MTL weaver presented in figure A.12  to access these tags 
and to use them for very different purposes. Since MTL-aspects only rely on the tag exten-
sion mechanism to define additional weaving directives, it is possible to use the same parser 
for reading both MTL-aspects and MTL transformations, as shown in figure A.12 .

In order to give an example of an MTL-aspect that could play the role of A in 
figure A.12, we show in figure A.13 some snippets of the MTL1-D-Aspect. For the sake 
of readability, we will further on refer to as input library the MTL library taken as input for 
the weaving process, i.e., the library that plays the role of T in figure A.12, and its elements 
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input classes, input methods, etc. The MTL library produced as a result of the weaving pro-
cess, T+A in figure A.12, will further on be referred to as output library, and its elements 
output classes, output methods, etc.

Each line in figure A.13 may be considered as a weaving directive for the MTL 
weaver. For instance, the first line defines the name of the input library that the MTL1-D-
Aspect will have to be weaved in, i.e., Copy. In order not to alter the Copy input library 
during the weaving process and to avoid name clashes between input and output libraries, 
the name of the output library has to be provided. This can be achieved by defining a tag on 
the MTL library of the MTL-aspect. We have named this tag rename, and its value repre-
sents the name of the MTL library produced as a result of the weaving process, e.g., Dis-
tribution in this particular case.

By default, elements of the input library will be simply reproduced in the output 
library. However, this simple reproduction can be tuned by the rest of the MTL-aspect. For 
instance, in figure A.13 , the MTL class Copier is defined. This weaving directive indi-
cates to the MTL weaver that if a class with the same name exists in the input library, then 
the reproduced class in the output library contains both the members in the input class and 
the ones defined in the MTL-aspect class. This process is called class merge. On the other 
hand, if this class does not exist in the input library, then it will simply be added to the out-
put library exactly as it is defined in the MTL-aspect, i.e., it will include all member defini-

library Copy; 
tag rename := specialtag [Distribution]; 
 
class Copier { 
  servantIterfaceName : Standard::String; 
 
  initDI(sin : Standard::String) : Copier { 
    self.servantIterfaceName := sin; 
    return self; 
  } 
} 
 
class [{Copier$}] { 
  [{^getTarget(.*)}](theSource : Standard::ModelElement) 
  tag merge := specialtag [Append]; 
  tag refactorParameters := booleantag true; { 
    theSource.toOut(); 
  } 
}

Figure A.13: Snippets of the MTL1-D-Aspect 
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tions defined by the MTL-aspect, e.g., the servantIterfaceName MTL attribute and the 
initDI MTL method.

A conflict may appear during a class merge if some members in the matching input 
classes and in the MTL-aspect class have the same name. If the member in the MTL-aspect 
is an attribute, it will be added as it is, without worrying whether the name of the attribute 
already exists in the input MTL library, since the rest of the compilation process will detect 
such a duplicate attribute, if any, and an error will be thrown. For methods, the detected 
conflict is registered to be solved later.

MTL-aspect developers may refer many MTL classes or MTL methods in a single 
pattern by relying on "wildcard" facilities, such as "_", which matches any name, or the 
more sophisticated regular expressions delimited by curly brackets. For instance, in 
figure A.13 , the class named {Copier$}, matches all input classes whose name ends 
(denoted by $) with "Copier", and its method {^getTarget(.*)} matches all input 
methods, defined on the matched input classes, whose name starts (denoted by ^) with "get-
Target". As a rule, MTL-aspect developers should not abuse of such constructs in order to 
add new classes or methods to the output library.

The class merge process, as it is implemented in the MTL weaver, is shown in 
figure A.14. The libClass represents the input class, and the behaviorClass repre-
sents the MTL-aspect class. Please note that the name of the behaviorClass matches the 
name of the libClass as a precondition for the mergeClass method.

A method conflict may be solved according to some predefined rules. We have identi-
fied three kinds of possible rules that prescribe the MTL weaver how to manage the instruc-
tions defined by the conflicting method of the MTL-aspect:

• run MTL-aspect instructions at the very beginning of the output method,
• run MTL-aspect instructions just before returning from the output method, or
• replace input instructions with MTL-aspect instructions in the output method.

It is the responsibility of the MTL-aspect developer to indicate which alternative s/he 
desires to be chosen for a given method conflict. For this purpose, we defined the merge
tag that has to be added on each conflicting method in the MTL-aspect. The three possible 
values corresponding to the previously described rules are Prepend, Append, and 
Replace respectively. If a conflict cannot be solved, the weaving process ends in failure.

The instructions in the MTL-aspect method may need to refer to some parameters of 
the matched input methods. The presence of the boolean tag refactorParameters set to 
true makes the parameters of the input methods accessible inside the MTL-aspect accord-
ing to the names provided in the MTL-aspect method. Moreover, this tag makes the method 
matching take care of the number of parameters in the input methods rather than just match-
ing the names of the methods.

As an example, figure A.13  states that for all input methods whose names start 
with "getTarget" inside classes whose names end with "Copier", the first parameter, named 
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in the MTL-aspect theSource, must be sent to the console by means of the MTL pre-
defined operation toOut. This output must be performed before returning from the modi-
fied MTL methods, as stated by the value Append of the merge tag defined for the 
MTL-aspect method.

As a summary, the list of possible tags that may appear in the definition of an 
MTL-aspect is provided in figure A.15 The first column gives the name of the tag as it must 
appear in the MTL-aspect. The second column indicates on which MTL element this tag 
may be defined. The third column indicates whether the presence of the tag is mandatory or 

mergeClass(libClass : BasicMtlASTView::UserClass; 
           behaviorClass : BasicMtlASTView::UserClass) { 
  lo : Standard::Set; 
  // adding attributes 
  if (isNull(behaviorClass.definedAttributes).not()) { 
    foreach (at : BasicMtlASTView::Attribute) 
      in (behaviorClass.definedAttributes) { 
      libClass.appendDefinedAttributes(at); 
    } 
  } 
  // merging operations 
  foreach (bo : BasicMtlASTView::Operation) 
    in (behaviorClass.definedMethods) { 
    lo := matchingOperations(libClass, bo); 
    if (lo.size().[=](0)) { // to be added 
      if (self.canAdd(bo)) { 
        libClass.appendDefinedMethods(bo); 
      } else { 
        bo.name.concat( 
          'seems to be a pattern; no correspondance found.' 
          ).toOut(); 
       'ignoring addition to class '.concat(lib-
Class.name).toOut(); 
      } 
    } else { // conflict, to be treated later 
      self.operationConflicts := 
         operationConflicts.including( 
           new OperationConflict().init(libClass, lo, bo)); 
    } 
  } 
}

Figure A.14: MTL Weaver Snippets for Class Merge (mergeClass)
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optional; default values are indicated for optional tags. The fourth column gives a brief 
description of the semantics of the possible associated values.

As we showed on some concrete examples, the MTL-aspect developer does not need 
to have a deep knowledge of the MTL metamodel and its semantics in order to transform an 
MTL transformation. All s/he needs to know is the MTL syntax and some predefined tags. 
Moreover, with the current implementation of the MTL weaver, an MTL-aspect is about 10 
times smaller (in lines of code) and about 50 times faster to develop than a standard MTL 
transformation that would achieve the same weaving behavior on another MTL transforma-
tion.

Please notice, however, that the MTL weaver and the aspect-oriented support pro-
vided are prototypes, so there is still room for refinement and improvement. New constructs 
could be added in order to address MTL-aspect developer needs and to facilitate as much as 
possible the development of "reflective" MTL transformations. For instance, it would be 
very helpful to have a pattern matching for instructions or expressions, e.g., matching all 
calls to a given method. The pattern we adopted for extending the MTL language with 
AOP-like constructs would remain nevertheless the same, i.e., extending the language by 
providing new tags that change the semantics of their base element, just like UML profiles 
extend the UML.

A.3.4 Running Example

In this part, we consider the weaving of the MTL1-D-Aspect in the simple MTL Copy
transformation in order to modify its behavior and make a system distributed by applying 

Tag Name
Base 
MTL 

Element
Presence Description

rename Library mandatory The name of the output library.

merge Method mandatory 
if conflict

Prepend to add instructions at the 
very beginning of the method.
Append to add instructions just 
before returning from the method.
Replace to replace initial instruc-
tions with MTL-aspect instructions.

refactor-
Parameters

Method optional; 
default 
value is 
false

Indicates if the number of parameters 
has to be considered in the pattern 
matching, and if parameters have to be 
intercepted for further use inside 
MTL-aspect instructions.

Figure A.15: Predefined MTL-Aspect Tags
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the stereotypes defined in the DistributionProfile according to some configuration 
information. Since the goal is to illustrate the most important principles of the weaving pro-
cess, we focus on very small parts of the example.

The input MTL Copy transformation is specialized in copying an input UML 1.4 
model to an output UML 1.4 model. Snippets of the transformation are presented in 
figure A.16. The transformation is located in the MTL library Copy, having two variables, 
in and out, for referring to the input, and output models respectively. One of the MTL 
classes of this library is Copier, which defines the getTarget method. This method takes 
as parameter a UML element srcElt from the in model, and retrieves and returns the cor-
responding UML element inside the out model. Another MTL class, extending Copier, is 
UML14CreatorCopier, which defines the getTargetClass method. This method 
takes a UML class src in the in model as parameter, and is responsible for creating and 
returning a UML class in the out model.

We present now two of the modifications that have to be performed in order for the 
MTL Copy transformation to make a system distributed. The first one is to make an inter-
face remotely available, but before doing this we still need to identify the right interface. 
The solution we considered is to add an attribute, servantIterfaceName, to the MTL 
Copier class as a placeholder for the name of the interface to be distributed. This attribute 
is transmitted to the MTL Copier class by means of the new method initDI defined in 
the MTL1-D-Aspect. The second modification is to display on the console UML elements 

library Copy; 
model in  : RepositoryModel;// should be a UML1.4 MetaModel 
model out : RepositoryModel;// should be a UML1.4 MetaModel 
class Copier { 
  getTarget(srcElt : in::Core::Element) : out::Core::Element 
    { 
    r : out::Core::Element; 
    ... // compute r 
    return r; 
  } 
} 
class UML14CreatorCopier extends Copier { 
  getTargetClass(src : in::Core::Class) : out::Core::Class { 
    r : out::Core::Class; 
    r := new out::Core::Class(); 
    trace(src, r); 
    return r; 
  } 
}

Figure A.16: Snippets of the Copy Input Library
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from the in model for which a correspondence in the out model has been requested. A 
thorough analysis of the complete MTL Copy transformation would clarify that such corre-
spondences are only requested when invoking methods whose names start with "getTarget", 
and which belong to a class whose name ends with "Copier". These modifications are pre-
scribed in the MTL1-D-Aspect that was partly presented in figure A.13, where part  cor-
responded to the first modification, and part  to the second one.

The result of weaving the MTL1-D-Aspect in the MTL Copy transformation is 
shown in figure A.17. Even though we have clearly stated in section A.3.2 that the results of 
the MTL weaving process are just MTL binaries and Java source files, figure A.17 repre-
sents what a pretty printer would produce for the MTL binary. Changes introduced by the 
MTL-aspect are highlighted by change bars. Since the output MTL library is different from 
the original MTL Copy library, a renaming has occurred according to the rename tag that 
was specified on the library definition inside the MTL1-D-Aspect, as shown in 
figure A.17.

Part  of the MTL1-D-Aspect in figure A.13 states that an MTL class named 
Copier must appear with a servantIterfaceName attribute and an initDI operation 
in the output library. Even though such an MTL Copier class already exists in the input 
library, no name conflicts have been found, and therefore member definitions from both the 
MTL-aspect and the input class are directly added to the MTL Copier output class, as 
shown by figure A.17 .

The MTL-aspect method defined in part  of the MTL1-D-Aspect in figure A.13
matches the input methods Copier::getTarget and UML14CreatorCopier::get-
TargetClass. Please note that the presence of the refactorParameters tag set to 
true in the MTL-aspect has made the method matching check that only one parameter is 
defined for these input methods, parameter that will further on be used as the variable the-
Source inside the body of the MTL-aspect method. The tag merge set to Append defined 
on the MTL-aspect method indicates how possible conflicts should be solved. Since con-
flicts have indeed been found, the instructions defined in the MTL-aspect have to be 
inserted in the output class just before returning from the corresponding reproductions of 
the input methods in the output class, as part of the output library. To achieve this, we rely 
on the MTL try-catch-finally statement: instructions of the input method are repro-
duced in the try part, and instructions from the MTL-aspect method are reproduced in the 
finally part, as shown in figure A.17 . In this way, we enforce that instructions from 
the MTL-aspect method are executed just before returning from the output method, wher-
ever an MTL return instruction may appear in the input method. The true value for the 
refactorParameters tag also instructs the MTL weaver to produce new variables in the 
output methods according to the parameters defined in the MTL-aspect method that are sup-
posed to match parameters from the input methods. These new variables represent place-
holders for the values of the parameters of the input methods that were intercepted by the 
corresponding MTL-aspect method. Applying this rule for the two input methods matching 
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library Distribution; 
model in  : RepositoryModel;// should be a UML1.4 MetaModel 
model out : RepositoryModel;// should be a UML1.4 MetaModel 
class Copier { 
  servantIterfaceName : Standard::String; 
  initDI(sin : Standard::String) : Copier { 
    self.servantIterfaceName := sin; 
    return self; 
  } 
  getTarget(srcElt : in::Core::Element) : out::Core::Element 
{ 
    r : out::Core::Element; 
    theSource : Standard::ModelElement; 
    theSource := srcElt;  // [*] 
    try { 
      ... // compute r 
      return r; 
    } finally { 
      theSource.toOut();  // [*] 
    } 
  } 
} 
 
class UML14CreatorCopier extends Copier { 
  getTargetClass(src : in::Core::Class) : out::Core::Class { 
    theSource : Standard::ModelElement; 
    theSource := src;     // [*] 
    try { 
      r : out::Core::Class; 
      r := new out::Core::Class(); 
      trace(src, r); 
      return r; 
    } finally { 
      theSource.toOut();  // [*] 
    } 
  } 
}

Figure A.17: Snippets of the Distribution Output Library
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the MTL-aspect method {^getTarget(.*)}, new theSource variables will be added in 
the corresponding output methods for storing the very input parameters that were previ-
ously matched (see figure A.17 [*]).

A.4 Conclusion

An LDE step is mainly composed of an abstraction layer describing the system under study 
that is improved to reach a more concrete abstraction layer by integrating more information 
about platform(s) specificities. Regarding current technologies (see chapter 2), an abstrac-
tion layer may be a set of models, each one of them being described using a modeling lan-
guage defined by an abstract syntax, one or more concrete syntaxes, and semantics. 
Improvement may be realized by a model transformation expressed in a model transforma-
tion language (with abstract syntax, semantics and concrete syntax).

This thesis proposed techniques to describe concrete syntaxes of languages whose 
abstract syntax is given in the form of a metamodel. Beside this, this appendix underlined 
the interest for an existing LDE methodology to be "tailorable". We also explored a mean to 
define such customizations regarding abstract syntaxes and improvements (through trans-
formations) when modeling languages and transformation languages proposed an extension 
mechanism related to profiles. UML and MTL are such languages, so does Java when used 
with annotations [Jav04].

We explored here such a mean for languages that already include an extension mech-
anism both in their abstract syntax and concrete syntax. However, this is only a first step. 
Indeed, one may need to tailor languages at abstract syntax level (e.g. using higher-order 
hierarchies), at semantics level, but also at concrete syntax level.[AvSB04]
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