

Table of Contents

TABLE OF CONTENTS.. 2
INTRODUCTION... 3
1. STATE OF THE ART ... 3

1.1 XML .. 3
1.2 SVG ... 4
1.3 DOM.. 5
1.4 DOPIDOM ... 5
1.5 BATIK... 6

2. PROBLEMATIC ... 7
2.1 CONTEXT : LANGUAGE DEVELOPMENT... 7
2.2 AIM OF THE PROJECT .. 7
2.3 EXAMPLES OF ABSTRACT AND CONCRETE SYNTAX... 7

3. ARCHITECTURE.. 10
3.1 GENERAL ARCHITECTURE... 10
3.2 DOPIDOM ARCHITECTURE .. 10

4. USER GUIDE... 16
4.1 INTERFACES.. 16
4.2 INTERFACES VISUAL SUMARY... 22
4.3 COMPONENTS ... 23
4.4 COMPONENTS VISUAL SUMARY .. 34
4.5 INTERACTIONS.. 35
4.6 UTILITIES.. 35
4.7 TABLEAU RÉCAPITULATIFS... 41

5. STATE OF THE PROJECT ... 42
5.1 ANALYSIS... 42
5.2 CORRECTIONS .. 48
5.3 WHAT HAVE TO BE ADDED ... 50

6 CONCLUSION.. 51
6.1 ENCOUNTERED PROBLEMS.. 51
6.2 CONTRIBUTION TO LANGUAGE DRIVEN DEVELOPMENT .. 52
6.3 WHAT I LIKED AND REGRETTED ... 52
6.4 ACQUIRED KNOWLEDGE ... 52
6.5 REMARKS ... 53

 2

Introduction
The aim of this project is to give facilities to represent graphical
concrete syntaxes. For this, the project can be separated in two
main aspects. In first hand, SVG which is a XML dialect used to
define vector graphics, will be added features for representing
concepts and relations between them. On the other hand, extended
SVG graphics will be given behaviours thanks to a Java toolkit
named DoPIDOM, so the user will be able the interact with the
components. The project have been temporary called ProBXS which
means “Provide Behaviour to XML/SVG”.
This report is divided in six parts. First of all, the technologies
involved in the project will be presented and it will be explained
why they’ve been chosen. Then, the problematic will present the
context in which ProBXS is created and what problem is the latter
going to solve. Will follow the description the general architecture
used to handle different interactions. After that, a user guide will
present in details how to use java classes, the constraints that have
to be respected and the extentions added to SVG. A lot of graphical
examples will also be shown in order to illustrate the aspect of what
have been done. Then different aspects about the current state of
the project such as an analysis and corrections to do will highlight
key concepts for those who will continue the project. Finally, the
report will be concluded by showing which problems have been
encountered and how the project contribute to his context.

1. State of the art

1.1 XML
XML is a W3C standard and means eXtensible Markup Language. It
is a very simple and flexible text format and is used as a base to
create specialized languages. XML language synthax is based on
markups that forms structured data and can be used to represent
any kind of concepts.

Objective and utility
The initial objective is to give facilities to exchange structured data
on the Web. The main goal is to make a separation between data
and its representations. Thus XML store documents data and
increase portability between systems thanks to their format which is
in UNICODE. There exist many tools on the Web that can load,
import, manipulate and save XML.

 3

XML also provide a support to define new languages in an easy way.
Nowadays there exist many of these derivated languages that we
call XML dialects. They follow formals syntaxes which are defined by
DTD (Document Type Definition) or an XML Schema.

Functioning
The character encoding is defined in the first statement of the
document, by default UTF-8 is used, which is a particular
transcription of UNICODE.
The document is structured in Elements that are defined by means
of start and end mark-ups. Elements can nest other elements. The
whole set of elements in the document are contained in a unique
element called “root”. Apart of elements, XML documents contain
different kind of data:

• Comments (that are not part of the data)
• Processing instructions
• “Character calls” (to represent characters that doesn’t exist in

the used encoding
• “entity calls” (kind of text macros)

1.2 SVG
SVG is a XML dialect to represent advanced vector graphics. It is
used to display vector graphic on the Web and have more less the
same capacities of definitions than Macromedia Flash.

Advantages
• open source
• resolution indepandant / bandwidth
• text based
• support transparency
• can be read by many tools
• standard

We will use this standard because he is well known, and that means
that a lot of free resources can be found giving the possibility to
edit, display and interact with it. One of the main characteristic that
differentiate ProBXS from other diagram tools is that the
representations are fully customized by the user. So with SVG, the
user will be able to design his own component with the tool that he
wants. Moreover, whereas vector graphics like flash store its
documents in binary, flash store them in human readable/modifiable
texts.

 4

1.3 DOM
To parse and manipulate the XML structure of SVG, an advanced
tool is needed. Basically, two known toolkit are well known: SAX and
DOM. The latter offer an easy handlable tree interface that
represents XML structure. For this project, the use of a tree
structure to represent the SVG components and their hierarchy is
clearly unavoidable. For this reason and because of the numbered
advantage that DOM offer over SAX, the project will be partly based
on DOM.

Using DOM
At first the application has to load SVG document using the parser.
This latter will build a tree of elements called nodes. There exist
many different kind of nodes, for example :

• Text nodes
• Attribute nodes
• Element nodes
• Comments nodes

The nodes are given methods by means of interfaces in order to be
accessed, or to navigate through the tree. This allows applications to
handle XML quite easily.

Advantages of DOM
• Robust and complete API for manipulating the tree.
• Relatively simple to modify the data structure and extract

data.
• Isolate DOM nodes we want to deal with are isolable and can

be used a vector of information between classes.
• Each component of the tree is represented by classes. This

allows to subclass and therefore to wraps DOM nodes to run
other mechanisms on the tree structure.

1.4 DoPIDOM
DoPIDOM is a java implementation of the DPI model based on DOM
and SVG. The aim of the DPI model (Documents, Presentations,
Instruments) is to provide an alternative to current application-
centred environments by introducing a model based on documents
and interaction instruments.
DPI makes it possible to edit a document through multiple
simultaneous presentations. The same instrument can edit different
types of content, facilitating interaction and reducing the user’s
cognitive load. DPI includes a functional model, aimed at the user
interface designer, that describes implementation principles in terms
of properties, services and representations. The DPI model offers a
first but essential stage in designing and implementing a new

 5

generation of document-centered environments based on a new
interaction paradigm.
DoPIDOM propose an architecture in which Components and
behaviours are defined separately.

DoPIDOM and SVG
SVG is a good base to work on, but the problem is that it’s far not
sufficient just to describe and to work with graphical concrete
synthax that represent instances. Interactive and dynamics
components are needed, but SVG is static !
It is possible to define some simple interactions with the SVG
standard, but it will not provide the complex one requiered by the
graphical edition of a language.
DoPIDOM wrapps XML/SVG elements represented in the DOM tree,
in a new kind of component wich can consume or produce actions or
queries that will modify or get informations.

1.5 Batik
Batik is a java toolkit for applications or applet that want to use
images SVG format for various purpose, such viewing, generation or
manipulation.
In our case we will need the parsing functionalities, and the renderer
module which use a swing derivated canvas that can display SVG
components.
There is some other functionalities like a SVG generator that
translate the usual graphic interface of swing in SVG language, or
even a browser, that is like a little application to load SVG
documents.
When actions modify the DOM tree, Batik update the display
immediately.

 6

2. Problematic
2.1 Context : Language development

Nowadays the best approach for development is to chose a specific
language for each requierement. But currently, developers are
seriously constrained by the limitations of programming languages.
With the Language-Driven development, the key thing is that
developers can design their own languages which tend to focus on
implementation level abstractions.

2.2 Aim of the project
When we create a language, we have to define abstract and
concrete synthaxe. Abstract syntax is the metamodel of the
language and concrete syntax is the way to modify the instances.
This concrete syntax usually is the vocabulary of the language, but
here we are interested in a graphical way of programming. The aim
of the project is to provide facilities to create such languages.
ProBXS only help on the graphical part of this language modeling,
more precisely, on the behaviours and components that could be
needed to represent graphical instances. The representations would
be based on SVG to let the user design his own language. To give
language modeling abilities to SVG, this latter is extended so the
user must be able to have some interactions with his components
such as :

• Translation
• Attachement
• Ability to show relations between them
• and more

2.3 Examples of abstract and concrete
syntax

The chessboard

Abstract syntax (metamodel) :

 7

Board Case Spawn

Color : 0..1
Owner : OWNER

64 1 1 1

Concrete syntax (instance) :

The purchase list

Abstract syntax :

Purchase Customer

Lastname : string
Firstname : string
Phone : string
ClientQuality : 0..3

Seller

Lastname : string
Fistname : string

list

List : list of string

Total : float
Type : 0..1

Concrete syntax :

 8

Purchases

Dupont File

Firstname : Daniel
Lastname : Dupont
Phone : +41214567788

Type : credit
Total : 126.90 CHF

To buy

George Money seller

Cheese
Ham
Bread
Butter
Eggs

Double-
clic

Purchase list

Petri networks
Concrete syntax (screenshot) :

 9

3. Architecture
3.1 General architecture

To program the behaviour of the component we need an object
oriented programming language. For this we chosed to develop the
project in a Java 1.5 environement.
ProBXS is not a toolkit itself but complete the DoPIDOM proposed
architecture, that is to say, it adds features and new components.
Three main modules run together to make the interaction with SVG
components possible :

• Batik to display SVG graphics
• Dom to handle XML/SVG
• DoPIDOM to handle interactions with SVG

BATIK

DOM DOPIDOM

Display SVG

SVG/XML
DOCUMENT Handle behaviours

Screen

Wrapps elements ProBXS Handle XML

3.2 DoPIDOM architecture
Here will be presented the basic functionning of DoPIDOM and
additional features and concepts that have been added.
The way to create behaviour for SVG element is quite simple with
DoPIDOM. First of all, a subclass C1 of Component have to be
created. In the constructor of this class, interfaces that the
component must compose are declarated.
Finally the SVG element must be assigned the wanted class
(possible package must apprear) with the attribute : dpi:component.

 10

Dopidom Component C1

<rect dpi:component=’’C1’’ …/>

Interfaces
Wrapped by

Components
In the modeling language context, every concepts is represented by
SVG elements that can be wrapped by Components to be given
behaviours. We can point out two kind of behaviours for the
components :

• The sharable behaviours : the Actions and Queries (consumed
by interfaces)

• The behaviours inherent to the function of the component that
are the methods of the component class

Components data :
The state of a DoPIDOM component must be able to be completely
defined by SVG. Once a component is loaded, the interactions with
the components change the datas, moreover additional datas have
to be taken in account.
Afterwards, the entire informations about the component have to be
stored in SVG. Two kind of data can be distinguished :

• The Component Definition Data
Mandatory data about the properties of the object or about the
initial state. For instance, the color, the width, the other object
that it will use as sub parts (ex: Link Arrow)

• The Class Instance Data
Optional data that represent the state of some class variable.
For instance a number, a list of attached component, the
component on which an arrow is sliding.

In most cases Class Instance Data overlapp Component Definition
Data. If it’s the case, Class Instance Data always have priority.
The Class Instance Data are handled by VarPersistants that will be
explained in detail in the section.

Here is shown the role of VarPersistant during saving and Loading :

 11

wrapps

Component class

conversion

saving

conversion

Loading

CDD
CID

VarPersistant

Classical structure of components :
First of all, varPersistants are declared and will load possible Class
Instance Data.
Then in the constructor, three important parts should be present :

• Declarations of interfaces, that is to say, the specification of
which actions and queries component will be able to consume
(such as Translatable, ColorGettable, Locatable)

• getParameters() method call. Used to get Component
Definition Data

• checkInterfaces method call. Used to check if all mandatory
interfaces are present

Class Diagram :

Because Components wrapps Dom SVG Elements, they keep the
structure of this latter and thus components can access their
hierarchical parent or children.

Dom Element Component wrapps
has parent

has children

0..1

0..1
1

 12

Interfaces

Interfaces, actions and queries :
Interface consume actions or queries. Interface class define the
behaviour whereas actions or queries class are just used as
container to send data or get data from interfaces. The execution of
an interface is done by calling the method doAction() or doQuery()
with the action or query as parameter.
More than one interface can consume the same action/query, but an
Interface can consume only one of those.
Until now, only one interface has been assigned by action

Here are the list of the Interfaces associated with their consumable
actions or queries:

ActionInterfaces :
Interface Associated Action
BorderSlidable BorderSlide
DirectionAdjustable AdjustDirection
LinePullable PullLine
Positionable Position
Stickable Stick
Translatable Translate

QueryInterfaces :
Interface Associated Query
BorderFindable GetBorder
OriginGettable GetOrigin

Utility and use of each interfaces will be explained in the user guide

Classes Diagram

 13

QueryProducer QueryConsumer ActionProducer ActionConsumer

Query QueryInterface ActionInterface Action

Component

0..* 0..* 0..* 0..*

1 1

Can consume
queries
through

Can produce
actions

Handles instance of Handles instance of

Can run
queries

Can consume
actions
through

Interactions
In the continuation of ProBXS project, toolbars will be present
somewhere in the scene to allow users to chose which kind of cursor
they would like to use. To each type of cursor would be associated a
certain role, in other words, the ability to trigger specifics actions or
queries on consumer components.

SVGInteractions :
A SVGInteraction is a class that associate production of queries of
actions to mouse triggers such as mousePressed(),
mouseReleased(), etc. The cursors are related to the
SVGInteractions the same way as components are related to
interfaces. In the constructor of SVGCleanToolInteractors (cursor),
possible SVG interactions are defined.

Until now, the work has been concentrated on creating different kind
of component more than on diversifying possible interactions; the
only cursor available is named Pointer. All possible actions are
triggered by it. For this reason, the interactions are currently used
only to separate in logical groups actions and queries triggerable by
the Pointer :

• Attacher (make relations between objects)
• CaretManager (text edition)
• Loader (Scene Loader)
• Saver (Scene saver)
• Selector (select objects)

 14

• Slider (slide arrows on borders)
• Translater (Translate objects)

Ideal set of cursors :
An ideal set of SVGInteractions would correspond to a set of cursor
such as :

• The selecter
o Select multiple objects by mean of temporary selection

rectangle
o Select multiple objects one by one
o Contextual menu for selection

• The Translater
o Move selected components
o Move free arrows
o Slide arrows on border of components
o Move line points or handles

• The attacher
o Stick components together
o Unstick components

• The Creator
o Create new Components from models
o Delete unwanted component

• The Editor
o Edit text
o Edit lists
o Edit GraphicContainers

• Resizer
o Scale components
o Rotate component

Classes Diagram :

Component

0..*

SVGInteractions

SVGCleanToolInteractor

Catch mouse
triggers through

Cursors are
SVGCleanToolInteractors

 15

4. User Guide
Color code :
Diagrams :

• Grey : abstract methods
• Purple : important variables (like varPersistants)
• Blue : statics methods
• Back : public methods

SVG definitions :

• Black : standard SVG
• Red : PROBXS attribute (extention to SVG)
• Orange : optional attribute

4.1 Interfaces

BorderSlidable
Type : Action

Utility :
Allow a component be translated along the border of a
BorderFindable Component. Normally used for arrows.

Input (action content) :

• List of point representing the border b
• Coordinates of a point pt

Behaviour :
Put the wrapped element on the border b at nearest point from pt.

VarPersistants :
attachedComponent : BorderFindable Component on which the
wrapped element is sliding.
Parameter=”BorderSlidable(attachedComponent, componentID)”

Dependent interfaces :
BorderFindable (Query Interface), GetBorder (Query)

Subclasses ArrowBorderSlidable :
Dependancies : Arrow
setLocation() : Place the arrow of a constructed Link on the border
and adjust its orientation.

Subclasses StandardBorderSlidable :
setLocation() : Place the top left side of an object on the border

 16

Diagram :

BorderSlidable
(abstract)

attachedComponent
void setLocation()
void attachTo()
Component getAttachedComponent()
void setAttachedComponent()
boolean attached()

ArrowBorderSlidable

setLocation()

StandardBorderSlidable

setLocation()

DirectionAdjustable
Type : Action

Utility :
Used to orient a component in the direction of another object (a
point). Generally used to synchronize the Arrow’s orientation with
the curve of their Link’s

Input (action content) :

• A Point2D that represent the relative vector for the new
orientation.

Behaviour :
Put the wrapped element on the border b at nearest point from pt.

VarPersistants :
none

Dependent interfaces :
GetOrigin (Query)

Diagram :
Not relevant

 17

LinePullable
Type : Action

Utility :
Generally used to draw a temporary line between two points, for
example to make a relation

Input (action content) :

• Source point of the line
• Destination point of the line

Behaviour :
Important remark : doAction call must be done between
beginInteraction() and endInteraction(). beginInteraction() will
create a SVGLineElement, and endInteraction() will destroy it.
doAction() modify the coordinate of the pulledLine according to the
given points.

VarPersistants :
none

Dependent interfaces :
none

Diagram :
Not relevant

Positionable
Type : Action

Utility :
Used to set the position of a component

Input (action content) :

• New coordinates of the component

Behaviour :
Set the component’s position using the transform attribute

VarPersistants :
none

Dependent interfaces :
none

Diagram :

 18

Not relevant

Stickable
Type : Action

Utility :
Allow to group the translations of several objects. The stickable
component can have several children that will follow his movement.
Remark : the children displacement doesn’t affect the parent.

Input (action content) :

• Relative value of displacement

Behaviour :
Change the component’s position using the transform attribute and
forward the translate action to its children

VarPersistants :
Stickers : List of children elements to which the translation will be
forwarded
parameter=”Stickable(stickers, {componentsID, })”

Dependent interfaces :
Translatable (Interfaces) : Objects involved in Stickable must be
translatable

Diagram :

Stickable

Stickers
void addSticker()
void removeSticker()
Component getStickers()

Translatable
Type : Action

Utility :
Used to move a component to a given relative value

Input (action content) :

 19

• Relative value of displacement

Behaviour :
Change the component’s position using the transform attribute

VarPersistants :
none

Dependent interfaces :
none

Diagram :
Not relevant

BorderFindable
Type : Query

Utility :
Extract the contour from a SVG basic shape and return a list of
points generally used by BorderSlidable

Output (Query content) :
ArrayList of Point2D that represent the border.

Behaviour :
Compute the points that represent the contour from those type of
shapes :

• Polygon
• Rectangle
• Circle
• Line

And return an ArrayList of Point2D

For the contour extraction of circles, the number of step is calculated
in relation with the stepLength which is a constant variable of
BorderFindable class.

VarPersistants :
none

Dependent interfaces :
none

Diagram :

 20

BorderFindable

double stepLength

OriginGettable
Type : Query

Utility :
Get the exact position of the wrapped element tenant compte the
possible multiple transform attribut up in hierarchy. Moreover the
query the position related to the component origin defined in SVG,
not the top left bounding box of the object.

Output (Query content) :
Return a Point2D that represent absolute position of the wrapped
Element’s origin

Query :
Get the absolute position of the wrapped Element’s origin

VarPersistants :
none

Dependent interfaces :
none

Diagram :
Not relevant

 21

4.2 Interfaces visual sumary

Interface Interface

BorderSlidable

Stickable

DirectionAdjustable

Translatable

LinePullable

BorderFindable

Positionable

OriginGettable

 22

4.3 Components

AnchorPoint
Utility :
Component used to attach Links.

Use :
There is two general use of AnchorPoint. You can use it as a visible
shape that can anchor the links, or you can also set it invisible (SVG
attribute : visibility=”hidden”) in order to make only a part of
another shape link attachable.

Characteristics :
Being BorderFindable, you can only define Rectangles, Circles, Lines,
and Polygons as AnchorPoints.

VarPersistants :
Links : list of the links attached
parameter=”AnchorPoint(links, {componentsID, })”

Mandatory Interfaces :
Stickable
BorderFindable

Example :

Hello !

 Invisible Anchor Points Visible Anchor Points

Diagram :

 23

AnchorPoint

Links
void attachTo()
Vector getLinks()
void setLinks()
boolean attached()

SVG definition :

Example for a circle AnchorPoint :
<circle dpi:component=”AnchorPoint” linkType=”#link1” r=”30” …/>

Arrow
Utility :
Component used to handle and represent behaviour of Link’s
arrowStart and arrowEnd according to the body link’s anchor points
movement.

Use :
To make an arrow work properly, you must :

• Set its attached Link
• Set it as a startArrow or endArrow
• Use adjustArrow when the arrow have to be reoriented

according to the Link’line or AnchorPoint movement
This procedure will be automatically done by the Link component
during its construction

Characteristics :
For now, the arrow can only be polygons (to be changed !)

VarPersistants :
position : Integer specifying the position of the arrow on the Link
(startArrow or endArrow)
parameter=”Arrow(position, positionInteger)”

attachedLink : Component specifying the Link that the arrow
belongs to
parameter=”Arrow(attachedLink, componentID)”

Mandatory Interfaces :
ArrowBorderSlidable
Translatable
DirectionAdjustable

 24

OriginGettable

Example :

Diagram :

Arrow

position
attachedLink
Link getAttachedLink()
void setAttachedLink()
Point2D getLinkAnchorLocation()
void setLinkAnchorLocation()
void adjustArrow()
boolean hasLink()
void setStartArrow()
void setEndArrow()
boolean isStartArrow()
boolean isEndArrow()

SVG definition :
<polygon id =”arrow” dpi:component=”Arrow” ax=”15” ay=”0”
points=”…” …/>

ContainedGraphic
Utility :
Graphic that GraphicContainer can contains (see GraphicContainer)

Use :
Not relevant

Characteristics :

 25

Generally automatically generated by the GraphicContainers.
Shouldn’t appear

VarPersistants :
none

Mandatory Interfaces :
Translatable
Positionable
OriginGettable
Locatable

Example :

quality

Diagram :
Not relevant

SVG definition :
Example of a circle ContainedGraphic:
<circle dpi:component=”ContainedGraphic” id=”cg1” cx=”0” cy=”0”
r=”4” fill=”black”/>

CurvedLine
Utility :
Body of the Link. Manage the points and handle structures and
synchronize them with the SVG path element.

Use :
It is possible to create the CurvedLine on the fly (for example during
an on the fly Link creation) instead to define it in the SVG model file.
For that using the LineDescription class can be used (see the related
section for more details). If it’s done so, after the CurvedLine

 26

creation, the parentLink must be set, then points can be added
(handles will automatically be added between the new points)

Characteristics :
Can be automatically generated by a Link component’s creation.
The CurvedLine only wrapps SVG path elements. Moreover, you can
only define curved lines.
The format in the ‘d’ attribute to define a curved line in svg is :
Mx, y {S{hx, hy, px, py}+}, where x and y are the first position of
the line, px and py are the rest of the points, and hx and hy their
corresponding handles
To work properly, the parentLink must be set before use, but this
procedure will be automatically done by the Link component during
its construction

VarPersistants :
parentLink : Component specifying the Link that the CurvedLine
belongs to
parameter=”CurvedLine(parentLink, componentID)”

Mandatory Interfaces :
none

Example :

Diagram :

 27

CurvedLine

parentLink
void addPoint()
void setPoint()
void setHandle()
LineDescription getLineDescription()
void getLineDescription()
Link getParentLink()
void setParentLink()

SVG definition :
Exemple of a circle GraphicContainer :
<path dpi:component=”CurvedLine” d=”M10, 10 S50, 50 70, 100”
stroke-width=”2” stroke=”black”/>

GraphicContainer
Utility :
Used to represent numeric informations into graphical ones. Several
methods of positionement should be available

Use :
At initialization de number of contained graphic is set to 0. This
number can be changed with the provided methods, then the draw()
method must be called so the positions of the elements can be
calculated and drawn

Characteristics :
The positionement method (in-line or point centered) is defined by
the svg element type. For now only circle and rectangle are available

VarPersistants :
components : list of the contained components
parameter=”GraphicContainer(components, {componentID, })”

shape : Integer specifying the type of shape, therefore the type of
positionement
parameter=”GraphicContainer(shape, shapeInteger)”

Mandatory Interfaces :
none

Example :

 28

quality

Diagram :

GraphicContainer

Components
shape
void setGraphicNumber()
int getGraphicNumber()
void addGraphic()
void removeGraphic()

SVG definition :
Exemple of a circle GraphicContainer :
<circle dpi:component=”GraphicContainer” cx=”0” cy=”0” r=”30”
stroke-width=”2” stroke=”black” fill=”white” graphic=”#cg1”/>

LineHandle
Utility :
Used to deform CurvedLines. They are synchronized with the
handles of a SVG curved line path

Use :
LineHandle are generated automatically when points are added on a
Link. The visual aspect of handles are defined when they are created
with the class HandleDescritption

Characteristics :
As they are automatically generated, LineHandles shouldn’t appear
in a SVG model (except in saved ones).
Handles are identified on a CurvedLine by their hIndex

 29

VarPersistants :

ponent specifying the Link that the arrow

LineHandle(attachedLine, componentID)”

Index : Integer specifying the LineHandle’s position on a

LineHandle(hIndex, positionInteger)”

Mandatory Interfaces :

xample :

iagram :

Link
:

attachedLine : Com
belongs to
parameter=”

h
CurvedLine
parameter=”

Translatable
Handlable
Locatable

E

 D

LineHandle

attachedLine
int getHIndex()
void setHIndex()
CurvedLine getAttachedLine()
void setAttachedLine()

Utility

 30

Represent the groups of informations. That group of informations
allow to instanciate new links from a model and define the visual
characteristics

Use :
There is a possibility to define a Link without path, in this case an
empty CurvedLine will be automatically created with the attributes
specified in the SVG node of the Link (color, witdh, etc). If the path
attribute exists, those attributes are taken from this latter. When a
Link component is created, it automatically calls methods in their
Arrow and CurvedLine children so they can work properly. After the
Link instanciation, the start then the end location of the Link must
be set. Those function automatically add points if necessary.

Characteristics :
Must be defined if a SVG group.

VarPersistants :
curvedLine : Component specifying the CurvedLine children
parameter=”Link(curvedLine, componentID)”

startArrow : Component specifying the start Arrow children
parameter=”Link(startArrow, componentID)”

endArrow : Component specifying the start Arrow children
parameter=”Link(endArrow, componentID)”

Mandatory Interfaces :
none

Example :

 31

Diagram :
Link

curvedLine
startArrow
endArrow
void setStartLocation()
void setEndLocation()
CurvedLine getCurvedLine()
void setCurvedLine()
Arrow getStartArrow()
Arrow setStartArrow()

SVG definition :
<g id=”link1” dpi:component=”Link” arrowStart=”#arrow1”
 arrowEnd=”#arrow2” path=”#path1” stroke=”blue” stroke-
width=”2”/>

MovableElement
Utility :
Used to make an SVG component Translatable by the Pointer. It’s
usefull to assign it to a SVG group, so every Translate action
received by its children will be catched by the group and therefore
will move the entire group with its children

Use :
Not relevant

Characteristics :
Not relevant

VarPersistants :
none

Mandatory Interfaces :
Translatable

Example :

 32

(Translatable)SVG goup

Back (no interfaces)

Elem1 (no interfaces)

Elem2 (Translatable)

<g>
 <Back …/>
 <Elem1 …/>
 <Elem2 …/>
</g>

Incoming Translate
Action on on…

•Elem1 or Back
All elements in the group
move
•Elem2
Only Elem2 moves

Diagram :

 Not relevant

 33

4.4 Components visual sumary

Component Component

AnchorPoint

GraphicContainer

Arrow

LineHandle

ContainedGraphic

Link

CurvedLine

 34

4.5 Interactions
Interactions group methods in an Interface
The goal is to regroup methods related to the function of a certain
cursor

Attacher
Utility :
Put in relation object that can to the PullLine Action (see LinePullable
interation)

Execute Action/Query :
PullLine (Interface LinePullable)

Selector
Utility :
Used to select one or several objects

Execute Action/Query :
SelectAction (Interface Selectable)

Slider
Utility :
Used to slide Arrows on the border of objects

Execute Action/Query :
GetBorder (Interface BorderFindable)
BorderSlide (Interface BorderSlidable)

Translater
Utility :
Used to move components and arrows in freeSliding (when an arrow
is not attached to a border)

4.6 Utilities

varPersistant
Utility :
The goal is to be able to save crucials informations contained in
classes to XML that are necessary to reconstruct a saved scene
when it’s loaded.
VarPersistant can handle variable of different types that will be
synchronized with a specific attribute ‘parameters’ in the related

 35

SVG node. When the variable is modified, it codes the string
equilavent and update the parameters. When a scene is saved all
the dom tree is saved to XML, and therefore the attribute of the
varPersistant. Also, when a SVG file is loaded the value of the
variable is possibly filled according to the attribute content if found.

Use :
When a varPersistant is created, three importants informations must
be passed to the constructor :

• The node in which varPersistant will create/modify the
attribute parameters that usually is the wrappedElement of
the component or interface

• A string description of the context, for example the class that
belongs the varPersistant

• A string description of the role of the variable, that usually
correspond to the name of the varPersistant

Then the varPersistant can be modified with the given methods

There is no restriction the user to set the parameters attribute in the
SVG model in order to define preestablished setting such as Sticked
elements, attached border/arrow, number of ContainedGraphics,
and more.
Multiple variable can be defined in one parameters attribute, the
format is the following :
Parameters=
’Context1=(VarName1, value1){, ContextN=(VarNameN, valueN)}’

Subclass ComponentVarPersistant :
Variable Type : Component class
String format of the value : SVG Id of the SVG node of the
component
When a scene is loading and a ComponentVarPersistant is created
(for instance in the constructor of a Component class), it put back
its initialization with the method InvokeLater in order to be sure that
all the component have been loaded in the scene before trying to
find the Component that correspond to the SVG Element
Format. Because of this, the value will not be available before the
end of the loading. This availability can be checked using the
method isFilling() that returns true is the variable is still not filled

Subclass ListCPersistant :
Variable Type : Vector class containing Components
String format of the value :
‘componentNodeID1{, componentNodeID1}
The same problem than ComponentVarPersistant occurs for the
loading of the Components

Subclass IntVarPersistant :

 36

String format of the value : string representation of the integer

Diagram :

VarPersistant
(abstract)

String getValueString()
void setValueString()
boolean isSet()
void updateNode()
boolean isFilling()

ComponentVarPersistant

String getValueString()
void setValueString()
boolean isSet()
Component get()
void set()

IntVarPersistant

String getValueString()
void setValueString()
boolean isSet()
Component get()
void set()

ListCVarPersistant

String getValueString()
void setValueString()
boolean isSet()
void set()
Vector getVector()
Component get()
void remove()
boolean contains()
void add()

IdManager
Utility :
Used to create unic SVG ID’s for the nodes. Could be very usefull to
handle the id conflicts generated by the loading of a SVG file in the
scene (instanciation new components). Here is an example :

• Group of components loaded and having crossed references
• The instanciation make copy of nodes. If one Id is in conflict

with the existing scene, or if the file has already been loaded,
some id must change, and all references in the loaded group.

 37

This functionality could also be handled by the InstanceManager and
is not yet implemented.

Use :
To generate an Id, a Component or an SVGElement must be passed.
Both give the string representation of the corresponding Component
class (toString()). Then the Id is randomly changed until it is unic.

Diagram :

IdManager

String generateNewId()

InstanceManager
Utility :
Group methods to extract, copy and remove SVG nodes by
differents means. This class also could handle Id conflicts during the
loading of a file in the existing scene. (see IdManager)

Use :
Not relevant

Diagram :

InstanceManager

void addComponentId()
boolean existsId()
Component getComponent()
void defComponentId()
void removeFromId()
void instanciateFromId()
void instanciateFromNode()
Node getNodeById()
Element getElementByXPath()

LineDescription
Utility :
Used to represent the description of a curvedLinePath and provide
methods to modify the path and convert from text attribute to
structure and vice-versa. Though it represent all important attribute

 38

of a path, there is also a method to create a CurvedLine component
from the LineDescription

Use :
The lineDescription is used in two different ways :

• It is part of the CurvedLine class, and this latter use it to
synchronize SVG text representation of the path and class
datas

• It can be use to create a new curvedLine from a description
(the LineDescription will be also used like the first way after
CurvedLine creation)

To use it to create a CurvedLine, it’s mandatory to fill the
following properties before calling createLine() :

• Path
• Color
• Width

Diagram :

LineDescription

boolean isValid()
Point2D getPoint()
void addPoint()
void setPoint()
Point2D getHandle()
void setHandle()
LineHandle getLineHandle()
void setLineHandle()
void setHandle()
String getPathString()
void setPathString()
string getColor()
void setColor()
LinkedList getPath()
void setPath()
double getWidth
void setWidth()
void setWidth() void setWidth() void
void createLine()

ParameterChecker
Utility :
Used to facilitate the usual checks and retrieval of attributes from a
SVG node during its Component initialization (generally used in
getParameters()) and show errors messages on the console

 39

representation of the integer

Use :
Must be initialized the the node to be checked

Diagram :

ParameterChecker()

boolean checkElementType()
String getStringAttr()
String getStringNs()

Parser
Utility :
Used to make simple parsing on strings

Use :
Used to parse value from SVG attributes such as paths.
The methods are commented

Diagram :

Parser

void jumpAll()
void jumpAterChar()
void jumpToChar()
void jumpToEnd()
boolean endReached()
String nextToken()
void startNewToken()
char currentChat()

 40

4.7 Tableau récapitulatifs

Interfaces

Interface Utility dependencies varPersistant comments
BorderSlidable GetBorder attachedComponent one subclass for arrows, and

one subclass for general
components

DirectionAdjustable orient according a
point

GetOrigin

LinePullable draw temporary line
Positionable set position
Stickable group movement Translate stickers
Translatable move
BorderFindable extract border only polygons, rectangles,

circles, lines
OriginGettable get origin taking in

account SVG origin
definition

Components

Component Utility Interfaces comments
AnchorPoint Extract their border BorderFindable

Stickable
can only be basic shapes

Arrow conexion between
border and link

ArrowBorderSlidable
Translatable
DirectionAdjustable
OriginGettable

can only be SVG polygons

ContainedGraphic graphics for
GraphicContainer

Translatable
Positionable
OriginGettable
Locatable

CurvedLine Link body can only by SVG curved path
element

GraphicContainer Graphically represent
numerical
informations

can only be SVG circle or
rectangles

LineHandle deform curvedLines Translatable
Handlable
Locatable

automatically generated

Link regroup informations
for link instanciation

defined in a SVG group

MovableElement just able to move Translatable

 41

5. State of the project
5.1 Analysis

Here is a a detailed analysis of the important aspects of this project
for those who would wish to develop it further.
After the implementation of ProBXS, the following concepts pointed
out because they were sources of problems :
• Interface dependancy problem
• Types of behaviours (useless interface or components)
• Data of components (dinctinction of data type)
• Classes of components (standard or helpers)

For each sections of the analyse, solutions will be proposed to solve
the problem.

Interface dependancy problem
There is two to opposed view to optimize the architecture of
interfaces :

• To make them modular
• To make them independant

For instance the interface DirectionAdjustable is dependant to
OriginGettable.
So when a user create a new component, that must be
DirectionAdjustable, he must also include dependant Interface. The
main bad consequence is that a knowledge about the interfaces
dependencies is needed by the user to assign interfaces, which is a
bad point for the usability of the project. Though when interfaces
are chosen for a component, we don’t care about possible
dependant interfaces, the only interface needed is the one which
serve the wanted behaviour

Factors that could solve the dependancy problem :

• Rewrite code
• Change place of functionalities

Rewriting the code :
For our example, instead of using OriginGettable interface, we could
simply rewrite the four lines of code that allow to get the origin of
the component.
The advantage is that it would ma ke totally independant interfaces.
The disavantage is that it would become a nightmare when code
have to be changed.
This solution is clearly not usable !

 42

Change the functionalities places :
To avoid the Interfaces to need eachother, all interactions between
interfaces is done at the component level.

Functionalities pushed to components :

Interface classes

Component classes

Here we can point out the importance of the presence of component.
This situation wouldn’t be possible if interfaces were directly
assigned to SVG element. As said in the section
Architecture/Component, Components a necessary to put behaviours
inherent to type of component.

Here is the other extreme that we’d like to avoid. It generate a lot of
dependancies at the Interfaces level.

Functionalities pushed to interfaces :

 43

< elem … /> < elem … /> < elem … />

Interface classes

SVG elements

Actually, none of those extreme are possible because the priority for
the place of functionalities is given to the Type of Behaviours (see
Architecture/Components)
As we can see, functionalities distribution as impact on dependancy,
knowledge about interface dependancies by user and modularity
(reusability of the code of the behaviours)

Possible solution : InterfaceManager :
Here is a solution that would solve the problem of the load of
knowledge needed by user to use interface.

Each Interface would handle a InterfaceManager initialized with the
names of dependant interfaces.

 44

Interface can only call interfaces through the InterfaceManager, and
only for thos which have been declared.
User wouldn’t have to care about dependant Interfaces anymore
when he create new Component.

Useless interface and components
There are two types of behaviours : sharable and non sharable (see
Architecture/Component)
One of the goal of using an architecture based on interfaces
consuming actions/querie is to permit some behaviours to be shared
by many components. However, two kind of errors can be done :

• To make an Interface that will be usefull for only one
component, in that case the functionallity should be
implemented as a method in the Component class.

• To implement functionalities in a component class which could
be used by other kind of component in the future

When the user create a new component or a new interface, he must
keep in mind what kind of behaviour he is creating.
Those two errors have been done :

• The interface Handlable (ability to deform curvedLines) can
only be used by the LineHandles, moreover the user shouldn’t
care about this interface because the handles are generated
automatically

• The attachTo() method in the component Arrow should belong
to any component able to slide on a border, that is to say the
interface BorderSlidable

All the architecture should be verified again with that principle in
mind

Clarify the distinction between CDD and CID
As already said, there is two kind of data a component should
handle (see Architecture/Component/Component Data) :

• The Component Definition Data (CDD)
• The Class Instance Data (CID)

In this section we will analyse the necessity of this distinction.
The following question must be answered : Do we need to
distinguish the mandatory data to initialize a component, and the
optional ones that could have be added after a scene save ?
Advantage of making a distinction :
If there where no distinction, all parameters would be saved in
attributes with different names.
If the original data is kept, and modified data is stored in the
parameters attribute, it’s easy to extract the original SVG model just
by removing the Parameters attribute.

 45

To understand better what represent CDD and CID, here is a
graphical representation of the component class according to the
scene :

Before
initialization

Class Instance Data

Component Definition Data

Mandatory for initialization

Optional for initialization

<element
 attr1 = ‘value 1‘

‘value 2‘ attr2 =
 parameters = ‘param list’
/>

Scene

Component
Class

Proposed solution :
The distinction seems to be usefull but instead of having a method
for loading CDD (getParameters()), why not to to let CDD and CID
to be handled by VarPersistants ? If CDD and CID must be
differenciated, that is to say, the original data SVG model have to be
kept, a differenciation would have to be considered inside the class
VarPersistant. Then it would be better to handle conflicts.
Another advantage would be that each Variable directly represent
the node it is attached to and the initialization of all variables would
be automated just by putting the name of the attribute.
Probably then, VarPersistant system will have to be complexified to
handle conflicts, dependencies, etc.

Differentiation normal components / helpers
It’s possible to differentiate two kind of components :
• The components designed by the used that represent concepts of

the graphical concrete syntax

 46

• The components used to help the user to edit the components,
such as lineHandles, PulledLines, selection rectangles, future
combo boxes, tool boxes, etc.

The first ones, depends of the language of the user. In opposite,
second ones can be reusable in any languages.

It has been decided to handle both kinds of components exactly in
the same way to allow a maximum of flexibility. The only thing that
can make their distinction is the file in which they are defined.

Maybe in the future of the project, it may be good to make
something that distinguish them better (other class of component ?
not defined with dpi:component attribute ?). It would permit to
special considerations compared to normal components. For
instance :
• Ability to appear only then certain component are activated or

selected (LineHandle, comboBox, PulledLine, future selection
rectangle).

• Ability to be instanciated from parametered templates and would
not entirely be defined in SVG files. It would avoid to pollute SVG
files with thousand of components.

Also the fact that those helpers component are saved exactly the
same way as the others is not very “goodlooking”.

Another argument to differentiate those component is that the user
only care about his graphical language, maybe he doesn’t want to
define the shape of the helper component that should be always the
same. There is probably a good solution that do a good compromise
between flexibility and “user-friendlyness”.

Here is a representation of some reusable and non-reusable (cyan)
component :

 47

5.2 Corrections
In addition of the proposed correction in the Analysis section, here
are some other ones to consider.

Architecture
Interfaces and hierarchy :
Some interface are partly the same each other. Interfaces should be
putted in hierarchy in order to group those which are likely the
same. For instance, Translatable do the same translation than
BorderSlidable, expect that this latter has a constraint. The
interactions should be verified again with that principle in mind

Interactions :
Basically, SVGInteractions have been added to the DoPIDOM
architecture to group actions and queries that the cursor can trigger
by kind of behaviours.
Finally, interactions are related to the Interactors (cursor) the same
way than Interface are related to component. Every Interactor
should be represented by a picked tool in a toolbox. The interactions
should be verified again with that principle in mind

GraphicContainer :
• Make subclasses corresponding to each kind of positionement
• Reorganize Architecture and methods distribution over classes

and subclasses

 48

Limitations
AnchorPoints :
When an AnchorPoint is defined in SVG, the attribute linkType must
be specified. However the AnchorPoints should be able to anchor
any kind of links, and this attribute is useless

Arrows :
To only SVG element that can be an Arrow is the polygon element.
All elements should be allowed to be arrows.

Minors corrections
Initialization :
When something is added to the scene, a listener is triggered to
place the pointer at the end of the DOM tree so the cursor can
always be visible. The initialization for this listener is done in the
listener of the Pointer. A more appropriate place have to be found to
initialize general things.

SVG
Every new attribute extending SVG should be placed in different
names spaces

InstanceManager :
All methods should be turned static

Interactions :
The translations of arrows in the interaction Translater must be
incorporated to the TranslateRunner (optimisation for the
translation)

Bugs
BorderFindable :
When a border is not centered to zero in the SVG definition, the
BorderSlidable doesn’t slide properly

VarPersistant :
Each time a node is updated, the new parameter string is placed at
the beginning of the parameter attribute instead of replacing the old
value. This bug doesn’t prevent the system to work because only the
first matching parameter is read, but the bad point is that very long
parameters are generated espacially for the GraphicsContainer. This
bug is easy to correct.

General
Errors :

 49

• For RuntimeExceptions, the error should be related to the
Action/Query, and not the Interface

• In the beginning of the project, warning and fatal errors was
both signaled in the err output stream of the system. Fatal
errors should raise exceptions in order to be located easily

Correction sumary
• Types of behaviours

o Reorganize place of functionalities
o Delete useless interface
o Delete useless components

• Datas of components
o Clarify the needs (separation CDD/CID ?)

• Independancy problem
o Reduce implicit knowledge of dependancies needed by

user
• Classes of components

o Dont pollute SVG files with helpers
• Organize Interfaces in hierarchy

o Regroup interfaces by similarities
• SVGInteractions

o An Interactor must represent a tool

5.3 What have to be added
Links :

• Possibility to add intermediate points on CurvedLines by mean
of an interactor

• Possibility to move intermediate points on CurvedLines by
mean of an interactor. For now, only handles can deform
CurvedLines

• The handles should appear only when the links are selected
• Possibility to create Links between two components. For that

new components have to be instanciated from models with
InstanceManager

• Add the possibility to set different types of lines. For now only
curvedLines can be chosen as a Link Body

Behaviour assignement :
Give the possibility to assign single interfaces to elements when
defining the SVG scene instead of components (that are group of
Interfaces with methods). For instance, that would allow to have
some AnchorPoints Translatable, and others not

GraphicContainer :

 50

• For the in-line positioning, add the possibility to align to left,
right, top or bottom of the GraphicContainer

Other needed omponents :

• List
• ComboBox
• Better TextField

Selection :
A selection rectangle to select more than one component with only
one mouse click.

Undo/redo :
Methods to handle undo and redo are provided in interfaces, but
they’re not been filled

6 Conclusion
6.1 Encountered problems

Helpers
The problem with the helpers (see corrections/architecture) was
present from the beggining

Architecture
One of the advantage of DoPIDOM is to have a very modular
architecture. It is important to try to keep this modularity. Difficult
decision about the design of the architecture had to be done each
time a new component or interface was created to find which
behaviours it is possible to group. For instance, is it possible to
associate the behaviour of a GraphicContainer with a List, or the
translation of arrows on a border and the confinement of a
component inside limits with the same system of constraints but in
different dimensions ?
The future components to be designed will probably encounter this
problem much more.

Independancy
An important dilemma is the problem of interface independency told
in the section “Analysis”. DoPIDOM has been made to be very
modulable by sharing behaviours. The goal is to try to keep this
modularity, but this latter is sometime in contradiction with the
Independancy of interfaces.

 51

6.2 Contribution to language driven
development

After the final analyse of the project, a lot of concepts have been
taken from mistakes, and then propositions have been made for the
rest of the project. For sure, I don’t pretend they are correct either
and have to be reconsiderated by more experienced persons.
I hope that my work and my report can help in identifying the main
problems that can be encountered with the design of components to
represent graphical concrete syntaxes. Maybe it will facilitate the
creation new features for DoPIDOM or a specialized toolkit to model
modeling languages.

6.3 What I liked and regretted
I enjoyed working on that project, because it gave me a good
experience on big project architecture. Even if didn’t produce
anything amazing, I learned a lot about design and found it
important because students from Computer Science have a lack of
knowledge on making reusable architectures.
For sure it was a pleasure and a real interest for me to work in
cooperation with Frederic who I spent time with to solve daily
headaches.

I regret having spent too much time on solving implementation
problems than having designed interesting architecture for
components and interfaces (hierarchy).

6.4 Acquired knowledge
• Working with Eclipse (a big discovery !)
• Some Patterns
• Concepts on nowadays Java programmation
• Better technics to work on big projects, that is to say :

o Reflex of writing down problems and decisions tree for
further analyse

o Reflex of quoting and classifying ideas
o The case study helps in identifying weaknesses

• Better aptitude to analyse
• Better aptitude to put concepts in hierarchy

 52

6.5 Remarks

Remark about the number of uncorrected
things
After three month of work on this project, I realize that an
enormous part of the project should be refactored.

• Dependances between interfaces
• Interactions should have hierarchy (classes and subclasses).

For instance Translatable and borderSlidable both translate
objects, but one has constraints.

Moreover, there are many minor bugs or correction to do. Their
quantity and the lack of time to finish this project had for
consequence that it was much more usefull for the continuation of
the project to list them all than to correct only few of them (and not
have time to list them)

Remark about time and work balance
The amount of time required by the project was probably much
more than 12 hours/week (3 months), for this reason it’s unevitable
not to have a complete work. Though I did my best and had to
balance equitably my work time in two axes : In one hand, I had to
try to respond to Frederic’s demand and make a maximum of
features (we needed even much more features), and in the other
hand I wanted to make efforts on making a good code architecture
and reusability. Unfortunalety the second part was underdone in
order to assure a good synchronization with Frederic’s work but can
be seen as an advantage for the future work on the project : The
more feature have been done the larger is the view to do a good
refactoring general architecture.

Thanks
Thanks to my advisor Frederic Fondement who helped me with
patience during the semester !

 53

	Table of Contents
	 Introduction
	1. State of the art
	1.1 XML
	Objective and utility
	Functioning

	1.2 SVG
	Advantages

	1.3 DOM
	Using DOM
	Advantages of DOM

	1.4 DoPIDOM
	DoPIDOM and SVG

	1.5 Batik
	 2. Problematic
	2.1 Context : Language development
	2.2 Aim of the project
	2.3 Examples of abstract and concrete syntax
	The chessboard
	
	The purchase list
	
	
	Petri networks

	 3. Architecture
	3.1 General architecture
	3.2 DoPIDOM architecture
	Components
	Interfaces
	Interactions

	 4. User Guide
	4.1 Interfaces
	BorderSlidable
	DirectionAdjustable
	LinePullable
	Positionable
	Stickable
	Translatable
	BorderFindable
	OriginGettable

	 4.2 Interfaces visual sumary
	 4.3 Components
	AnchorPoint
	Arrow
	ContainedGraphic
	CurvedLine
	GraphicContainer
	LineHandle
	Link
	MovableElement

	 4.4 Components visual sumary
	
	 4.5 Interactions
	Attacher
	Selector
	Slider
	Translater

	4.6 Utilities
	varPersistant
	IdManager
	InstanceManager
	 LineDescription
	ParameterChecker
	Parser

	 4.7 Tableau récapitulatifs
	Interfaces
	Components

	
	5. State of the project
	5.1 Analysis
	Interface dependancy problem
	Useless interface and components
	Clarify the distinction between CDD and CID
	Differentiation normal components / helpers

	5.2 Corrections
	Architecture
	Limitations
	Minors corrections
	Bugs
	General
	Correction sumary

	5.3 What have to be added

	6 Conclusion
	6.1 Encountered problems
	Helpers
	Architecture
	Independancy

	6.2 Contribution to language driven development
	6.3 What I liked and regretted
	6.4 Acquired knowledge
	6.5 Remarks
	Remark about the number of uncorrected things
	Remark about time and work balance
	Thanks

